10. Notations

Latin Symbols

- \(A \) Pre-exponential factor in the Arrhenius equation \(\text{L/(mol s)} \)
- \(A \) Debye-Hückel parameter \(\text{kg}^{1/2}\text{mol}^{-1/2} \)
- \(A_{\text{film}} \) Surface area of the liquid film on the tubes \(\text{m}^2 \)
- \(A_{\text{jets}} \) Surface area of the water jets between the tubes \(\text{m}^2 \)
- \(A_{\text{Ph}} \) Phase interface area \(\text{m}^2 \)
- \(a_i \) Activity of the component \(i \)
- \(b \) Sum of the ion and gas specific parameters \(\text{m}^3/\text{kmol} \)
- \(b_+ \) Ion specific parameter for cations \(\text{m}^3/\text{kmol} \)
- \(b_- \) Ion specific parameter for anions \(\text{m}^3/\text{kmol} \)
- \(b_G \) Gas specific parameter \(\text{m}^3/\text{kmol} \)
- \(C_i \) Concentration of the component \(i \) \(\text{mol/m}^3 \)
- \(C_2 \) Constant in equation (5.46) \(-\)
- \(CF \) Concentration Factor \(-\)
- \(CI \) Chlorinity \(\text{g/kg} \)
- \(D_{iL} \) Diffusion coefficient of the component \(i \) in the solution \(\text{L/m}^2\text{s} \)
- \(d_i \) Inside tube diameter \(\text{m} \)
- \(d_o \) Outside tube diameter \(\text{m} \)
- \(d_{\text{jets}} \) Diameter of the jets \(\text{m} \)
- \(E \) Enhancement factor \(-\)
- \(E_A \) Activation energy \(\text{kJ/mol} \)
- \(g \) Gravitational acceleration \(\text{m/s}^2 \)
- \(H_{ij} \) Henry's law coefficient of the gas \(i \) in the solution \(j \) \(\text{mol/(m}^3\text{bar)} \)
- \(h \) Heat transfer coefficient \(\text{W/(m}^2\text{K)} \)
- \(h \) Sum of the ion and gas specific parameters \(\text{kg/mol, L/mol} \)
- \(h_+ \) Ion specific parameter for cations \(\text{kg/mol, L/mol} \)
- \(h_- \) Ion specific parameter for anions \(\text{kg/mol, L/mol} \)
- \(h_G \) Gas specific parameter \(\text{kg/mol, L/mol} \)
- \(I \) Ionic strength \(\text{mol/kg} \)
- \([i]\) Concentration of the component \(i \) \(\text{mol/kg solution} \)
- \([i]_{\text{SW}} \) Concentration of the component \(i \) that is free and involved in ion-pairs in seawater \(\text{mol/kg solution} \)
K Constant in equation (5.46) -
K Thermodynamic equilibrium constant of the reaction on molal scale -
K_{SW}^* Stoichiometric equilibrium constant of the reaction referring to the seawater scale on the basis mol/kg solution -
K_1^{SW} First dissociation constant of carbonic acid in seawater on the basis mol/kg solution -
K_2^{SW} Second dissociation constant of carbonic acid in seawater on the basis mol/kg solution -
K_{SP}^{SW} Solubility product constant of calcium carbonate in seawater on the basis mol2/kg2 solution -
K_{SW}^* Dissociation constant of water in seawater on the basis mol2/kg2 solution -
k Boltzmann constant J/K
k Rate constant of the reaction 1/s, L/(mol s)
k Thermal conductivity W/(m K)
k^o Rate constant of the reaction in ideal solution 1/s, L/(mol s)
k_1 Rate constant of forward reaction 1/s
k_{-1} Rate constant of backward reaction 1/s
k_2 Rate constant of second order reaction L/(mol s)
k_L^o Mass transfer coefficient in liquid phase without chemical reaction m/s
k_L Mass transfer coefficient in liquid phase with chemical reaction m/s
K_L Overall mass transfer coefficient in the liquid phase m/s
L Length of tube m
LSI Langelier Saturation Index -
m_i Molality of the component i mol/kg solvent
m Mass flow rate kg/s
NTA Normalized total alkalinity mol/kg
NTC Normalized total carbon dioxide content mol/kg
\dot{N}_i Molar desorption rate of the component i mol/s
\dot{n}_i Molar desorption flux of the component i mol/(m2 s)
n_{jets} Number of water jets between adjacent tubes -
n$_{row}$ Number of tubes in a horizontal tube row -
n$_{tubes}$ Number of tubes in the tube bundle -
pH pH value -
p$_i$ Partial pressure of the component i N/m2, bar
R Universal gas constant $J/(\text{mol K})$
RSI Ryznar Stability Index -
r Reaction rate $\text{mol}/(\text{m}^3 \text{s})$
ro Outside tube radius m

S Salinity g/kg
S Vertical tube spacing m
s Rate of surface renewal $1/\text{s}$

T Temperature K
T0 Top brine temperature °C
t The age of the element in the penetration theory s
TA Total alkalinity mol/kg
TC Total carbon dioxide content mol/kg
tD Diffusion time s
tP Residence time s
tR Average reaction time s

u Velocity m/s

V Liquid volume m^3
V Volume flow rate m^3/s

z Distance from the tube bottom line m

Greek Letters

β_A Contribution of the neutral molecule A in eq. (4.49) m^3/kmol
β_{ion} Contribution of the ion in eq. (4.48) m^3/kmol
γ Activity coefficient of the component i -
δ Film thickness m
δ_f Thickness of liquid film flowing over horizontal tubes m

Γ Mass flow rate per unit tube length ($\Gamma = \frac{\dot{m}}{2L}$) kg/(m s)

λ Distance between the water jets (wavelength) m
λ_d Taylor wavelength m
μ Dynamic viscosity kg/(m s)
ν Kinematic viscosity m^2/s
ρ Density kg/m^3
σ Surface tension N/m
θ Temperature °C
10. Notations

Indices

A Component A
B Bulk
BD Blow-down
b brine
CO$_2$ Carbon dioxide
CO$_3^{2-}$ Carbonate ion
D Distillate
eq Chemical equilibrium
F Feed water
FC Final condenser
G Gas
g Gas phase
H$^+$ Hydrogen ion
HCO$_3^-$ Bicarbonate ion
H$_2$CO$_3$ Carbonic acid
i Component
L Liquid side
OH$^-$ Hydroxide ion
Ph Phase interface
s Solid
s Saturation
SW Seawater
v Vapour
W Water
* Physical equilibrium

Dimensionless Numbers

Ga Galilei number
\[Ga = \left(\frac{\pi d_o}{2} \right)^3 \frac{g}{v^2} \]

Ha Hatta number
\[Ha = \frac{\sqrt{k_1 D_A}}{k_L^o} \]

Ka Kapitza number
\[Ka = \frac{\sigma^3 \rho}{g \mu^4} \]
<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nu</td>
<td>Nusselt number</td>
<td>(\text{Nu} = \frac{h}{k} \left(\frac{v^2}{g} \right)^{\frac{1}{3}})</td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl number</td>
<td>(\text{Pr} = \frac{c_p \mu}{k})</td>
</tr>
<tr>
<td>Re</td>
<td>Film Reynolds number</td>
<td>(\text{Re} = \frac{4 \Gamma}{\mu})</td>
</tr>
<tr>
<td>Sc</td>
<td>Schmidt number</td>
<td>(\text{Sc} = \frac{v}{D})</td>
</tr>
<tr>
<td>Sh</td>
<td>Sherwood number</td>
<td>(\text{Sh} = \frac{k_i^0}{D} \left(\frac{v^2}{g} \right)^{\frac{1}{3}})</td>
</tr>
</tbody>
</table>