Analyse der differentiellen Genexpression während der Entwicklung zur kardialen Hypertrophie bei der Spontan Hypertensiven Ratte

Dissertation

zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der Mathematisch-Naturwissenschaftlich-Technischen Fakultät der Martin-Luther-Universität Halle-Wittenberg

von

Torsten Hahn
geb. am 26.02.1973 in Dessau

Gutachter:
1. Prof. Dr. E. Wahle
2. Prof. Dr. B. H. F. Weber

Halle (Saale), 22.03.2006

urn:nbn:de:gbv:3-000010065
[http://nbn-resolving.de/urn/resolver.pl?urn=nbn%3Ad%3Agbv%3A3-000010065]
Für meine lieben Eltern Doris & Winfried Hahn und meine Frau Maria.
Inhaltsverzeichnis

INHALTSVERZEICHNIS.. I

1 EINLEITUNG ... 1
1.1 Bedeutung von Herz-Kreislauf-Erkrankungen .. 1
1.2 Die Myokardhypertrophie .. 1
1.3 Molekulare Mechanismen der Hypertrophie von Kardiomyocyten .. 3
1.4 Modellsysteme kardiovaskulärer Erkrankungen .. 6
1.5 Identifizierung von differentiell exprimierten Genen ... 7
1.6 Ziel der Arbeit ... 8

2 MATERIAL UND METHODEN .. 9
2.1 Chemikalien ... 9
2.1.1 Laborchemikalien und Radiochemikalien ... 9
2.1.2 Enzyme und vorgefertigte Systeme (Kits) ... 9
2.1.3 Molekulargewichts-Standards .. 10
2.1.4 Gebrauchslösungen .. 10
2.1.5 Sequenzen und Herkunft der synthetischen Oligonukleotide ... 11
2.2 Versuchstiere .. 12
2.2.1 Blutdruck- und Herzfrequenzmessungen bei den Ratten ... 12
2.2.2 Organentnahme .. 13
2.3 Molekularbiologische Standardmethoden .. 13
2.3.1 Agarosegel-Elektrophorese ... 13
2.3.2 Polyacrylamidgel-Elektrophorese (PAGE) ... 13
2.3.3 Isolierung von DNA-Fragmenten aus Agarosegelen .. 14
2.3.4 Phenol-/ Chloroform-Extraktion und Fällung von Nukleinsäuren .. 14
2.3.5 Bestimmung der Konzentration und Reinheit von DNA und RNA ... 14
2.3.6 Isolierung von Plasmid-DNA ... 14
2.3.7 Herstellung von Stammkulturen .. 15
2.4 Isolierung von poly(A⁺)-RNA ... 15
2.5 Subtraktive Suppressions-Hybridisierung (cDNA-Subtraktion) .. 15
2.5.1 Molekulare Grundlagen der PCR-gestützten cDNA-Subtraktion .. 16
2.5.2 Erst- und Zweit-Strang-Synthese der cDNA .. 18
2.5.3 Restriktionsansatz: Rsa I-Spaltung ... 19
2.5.4 Adapterligation ... 19
2.5.5 Erste und zweite Hybridisierung ... 20
2.5.6 Erste und zweite PCR-Amplifikation ... 20

2.6 Herstellung der subtraktiven cDNA-Bibliothek .. 21

2.7 Differentielles Screening .. 21
2.7.1 Amplifikation der ersten PCR-Produkte ... 22
2.7.2 Reinigung von PCR-Produkten .. 24
2.7.3 Immobilisierung subtrahierter Klone in cDNA-Arrays 24
2.7.4 Random Primer-Markierung der cDNA-Sonden ... 25
2.7.5 Hybridisierung mit der subtrahierten cDNA .. 25
2.7.6 Interpretation der Ergebnisse des differentiellen Screenings 25

2.8 Northern Blot-Analyse ... 27
2.8.1 Denaturierende Formaldehyd-Agarosegel-Elektrophorese 27
2.8.2 Northern-Blotting ... 27
2.8.3 Radioaktive Markierung von DNA-Sonden .. 28
2.8.4 Northern-Hybridisierung .. 28

2.9 Sequenzierung von DNA ... 28

2.10 EDV-gestützte Sequenzanalyse .. 29

2.11 Real-time quantitative RT-PCR ... 29
2.11.1 Theoretischer Hintergrund ... 29
2.11.2 Reverse Transkription ... 30
2.11.3 Real-time PCR .. 30
2.11.4 Datenanalyse mittels comparative quantitation .. 30

2.12 Statistik .. 31

3 ERGEBNISSE ... 32

3.1 Evaluierung der Methode .. 32

3.2 Nachweis des hypertrophen Zustands der SHR .. 34
3.2.1 Ermittlung von Blutdruck und Herz-/Körpergewicht-Quotienten der Ratten 34
3.2.2 Phänotypische Beobachtungen bei den Rattenherz-Präparationen 35

3.3 Isolierung von poly(A⁺)-RNA ... 35

3.4 cDNA-Subtraktion ... 36
3.4.1 cDNA-Synthese, Rsa I-Spaltung und Adapterligation 36
3.4.2 PCR-Amplifikation der subtraktiv hybridisierten cDNA 37
3.4.3 Klonierung der subtrahierten cDNA-Bibliotheken 38

3.5 Differentielles Screening ... 39
3.5.1 Subtraktion SHR-04 → SHR-12 ... 40
3.5.2 Subtraktion SHR-12 → SHR-26 ... 42

3.6 Northern Blot-Analysen .. 43
3.6.1 Subtraktion SHR-04 → SHR-12 ... 43
3.6.2 Subtraktion SHR-12 → SHR-26 ... 45
3.6.3 Kontrollhybridisierungen ... 47

3.7 Sequenzanalysen .. 47
3.7.1 Subtraktion SHR-04 → SHR-12 ... 48
3.7.2 Subtraktion SHR-12 → SHR-26 ... 48

3.8 Bestimmung der relativen Expression durch real-time RT-PCR 53
3.8.1 Evaluierung der real-time PCR anhand einer GAPDH-Verdünnungsreihe 53
3.8.2 Test der mRNA auf Kontamination mit genomischer DNA 56
3.8.3 Überprüfung von housekeeping-Genen als mögliche interne Kontrollgene 57
3.8.4 Relative Quantifizierung von Kandidaten für differentielle Genexpression 58

4 DISKUSSION ... 65
4.1 cDNA-Subtraktion ... 65
4.2 Northern Blot-Analysen .. 65
4.3 Relative Quantifizierung durch real-time RT-PCR .. 66
4.3.1 Suche nach geeigneten Referenzgenen ... 66
4.3.2 Neue und konventionelle Verfahren der quantitativen Datenanalyse 68
4.4 Charakterisierung von Kandidatengenen aus real-time RT-PCR 69
4.4.1 Gamma sarcoglycan (Sgcg) ... 69
4.4.2 Titin, transcript variant Novex-2 (Ttn) .. 72
4.4.3 Calmodulin-binding transcription activator (Camta1) 76
4.4.4 Solute carrier family 35, member F5 (Slc35f5) ... 77
4.4.5 Goliath protein (Gp) .. 78
4.4.6 Epidermal growth factor receptor substrate (Eps15r) 79
4.4.7 Beta actin (Actb) ... 80
4.5 Charakterisierung weiterer Kandidatengene aus Northern Blots 80
4.5.1 Gap junction membrane channel protein alpha 1 (Gja1) 80
4.5.2 Cadherin 2, type 1, N-cadherin (Cdh2) ... 83
4.5.3 Acyl-Coenzyme A dehydrogenase, long chain (Acadl) 84
4.5.4 Nucleolar protein 3 (apoptosis repressor with CARD domain) (Nol3) 85
4.5.5 Muscleblind-like 2 (Mbnl2) ... 86
4.5.6 Ribosomal protein L3 (Rpl3) .. 87
4.5.7 hnRNP methyltransferase-like 2 (Hrmt112) ... 87
4.5.8 Suppressor of cytokine signaling 6 (Socs6) .. 88
4.5.9 Citrate lyase beta like (Clybl) ... 89
4.5.10 Monoglyceride lipase (Mgll) .. 90

5 ZUSAMMENFASSUNG ... 94

6 LITERATURVERZEICHNIS .. 95

7 ABKÜRZUNGSVERZEICHNIS ... 105
1 Einleitung

1.1 Bedeutung von Herz-Kreislauf-Erkrankungen

„Im Herzen soll die Liebe zu Hause sein. Weit weniger prosaisch, aber noch viel wichtiger ist das Herz als unermüdlicher Motor unseres Lebenskreislaufs. Leider sind Herz-Kreislauf-Erkrankungen in Deutschland immer noch Todesursache Nummer 1.“

Hohe Kosten werden nicht alleine durch die Diagnostik, Behandlung und die enormen Arzneimittelausgaben verursacht. Zu diesen Ausgaben kommen dann noch die Aufwendungen für die Rehabilitation der Patienten und die weitere Betreuung nach ihrer Entlassung aus dem Krankenhaus hinzu.

1.2 Die Myokardhypertrophie

Unter Herzhypertrophie wird die infolge chronischer Mehrbelastung des Herzens einsetzende Zunahme von Herzmuskelmasse allein durch die Vergrößerung der Herzmuskelzellen verstanden, die durch harmonisches Faserwachstum bei unveränderter Faserzahl zustande kommt. Die pathologische Veränderung des Herzens soll in Abb. 1.1 anhand des Größenunterschieds zwischen einem erkrankten und einem gesunden menschlichen Herzen verdeutlicht werden. Rechts im Bild wird ein hypertrophiertes, deutlich vergrößertes Herz im Vergleich zu einem normalen Herzen, links, gezeigt.

\[\text{http://www.bmbf.de/de/1135.php}\]
Die Myokardhypertrophie stellt eine Anpassungsreaktion des Herzens auf eine Vielzahl mechanischer und hormoneller Stimuli dar und repräsentiert ein frühes Ereignis im klinischen Ablauf, der zur Herzinsuffizienz (Herzschwäche) führt (Brancaccio et al., 2003). Sie gilt als zuverlässiger Hinweis auf eine sich progressiv entwickelnde chronische Herzinsuffizienz, die mit einer erhöhten Morbidität und Mortalität einhergeht (Levy et al., 1990).

Da das Herz die Stoffwechselfunktionen des Körpers nicht mehr in vollem Umfang aufrechterhalten kann, stellt die Herzinsuffizienz eine schwere und häufig tödliche Erkrankung des Herzmusksels dar. Der verschlechterten Pumpleistung des Herzens können verschiedene Ursachen zugrunde liegen. Zum einen kann sie primär durch einen kranken Herzmuskel selbst (Kardiomyopathie) bedingt sein. Zum anderen kann die Herzkräft sekundär beeinträchtigt sein, wofür als wichtige Ursachen die mangelnde Durchblutung des Herzmuskels aufgrund einer Koronararteriosklerose, der Verlust von funktionierendem Muskelgewebe nach einem Herzinfarkt oder die andauernde Überlastung des Herzmuskels infolge einer chronischen arteriellen Hypertonie (Bluthochdruck) zu nennen wären. Um einer reduzierten Herzleistung entgegen zu wirken, geht die verminderte Pumpleistung des Herzens stets mit einer Aktivierung des vegetativen Nervensystems (Sympathikus) und der Freisetzung von bestimmten

1.3 Molekulare Mechanismen der Hypertrophie von Kardiomyocyten

Es konnte die veränderte Expression einiger Wachstumsfaktoren (TGFß1, IGFII) und ihrer Rezeptoren im hypertrophen Ventrikelgewebe nachgewiesen werden (Engelmann et al., 1996). Ebenso sind „klassische“ Transkriptionsfaktoren, wie egrl, fos, jun, myc (Schunkert et al., 1995), Mitglieder der Proteinkinasen-Kaskade, wie Raf1, MAPKK, MAPKs, (Yamazaki et al., 1996) und second messenger, wie cAMP, PKC, intrazelluläres Calcium, (Schneider et al., 1994) in den Wachstumsprozess involviert.

Eine zentrale Rolle bei der Weiterleitung hypertropher Stimuli spielen G-Proteingekoppelte Rezeptoren, wie z. B. die α1- und β1-adrenergen Rezeptoren, der Angiotensin II-Rezeptor und der Endothelin-Rezeptor (Rockman et al., 1997; Sugden et al., 1998), die über heterotrimere G-Proteine Effektoren wie cAMP, Calcineurin, Phospholipase C (PLC), Protein kinase C (PKC) und Mitogen-aktivierte Proteinkinasen (MAPKs) aktivieren. Diese Effektoren wiederum wirken über eigenständige Signalketten auf spezifische Transkriptionsfaktoren im Zellkern. Den aktuellen Stand der Forschung soll der schematische Überblick in Abb. 1.2 widerspiegeln.

Eine wichtige Regulationsfunktion kommt dem intrazellulären Calciumgehalt (Ca²⁺) zu, der die Signalketten über die Effektoren Calcineurin, MAPKs und PLC steuert. Die intrazelluläre Ca²⁺-Konzentration in der Kardiomyocyte steigt z. B. durch mechanischen Stress (Bustamante et al., 1991) oder humorale Stimuli wie Angiotensin II, Phenylephrine oder Endothelin-1 (Sadoshima et al., 1993; Leite et al., 1994; Eble et al., 1998) an. Gut beschrieben ist die Signalkette über Calcineurin, einer Ca²⁺-abhängigen
Einleitung

Die veränderten Eigenschaften des hypertrophierten Myokards sind mit einer komplexen Neuprogrammierung der kardialen Genexpression assoziiert. Die charakteristische Expression fetaler/embryonaler herzspezifischer Gene umfasst vor allem ein Spektrum kontraktiler Proteine der Herzmuskelzelle, wie β-MHC (β-myosin heavy chain) und Skelett-α-Actin sowie die Peptidhormone ANF (atrialer natriuretischer Faktor) und BNP (natriuretisches Peptid Typ B). Im Folgenden sind vier wichtige Markergene aufgeführt, für die signifikante Veränderungen der Genexpression im hypertrophierten Herzen gezeigt werden konnten. Eine erhöhte Expression hypertropher Markergene wird berichtet für:

1. den atrialen natriuretischen Faktor (ANF) (Winer et al., 1999; Young et al., 2001; Hempel et al., 2002)
2. das B-Typ natriuretische Peptid (BNP) (Bruneau et al., 2001; Iemitsu et al., 2002; Sakai et al., 2002)
3. Isoformen-Switching zum Skelett-α-Actin (Clement et al., 1999; Depre et al., 2000; Young et al., 2001); kardiales und Skelett-α-Actin wird fetal coexprimiert, während kardiales Actin im adulten Herzen überwiegt
4. Isoformen-Switching zum β-MHC (Schoenfeld et al., 1998; Depre et al., 2000; Hwang et al., 2002; Thum et al., 2002; Razeghi et al., 2003); β-MHC ist die fetale Isoform, während α-MHC die adulte Isoform darstellt

Über die Faktoren, die dieses Programm auslösen, wird bisher nur spekuliert. Mögliche Stimuli wären Retinsäure oder deren Derivate, die Retinoide, die in der frühen Entwicklung des Herzens eine Schlüsselrolle einzunehmen scheinen (Sucov et al., 1995).

Möglicherweise sind solche Faktoren, die an der frühen Herzentwicklung beitragen, auch in den Entwicklungsprozess der kardialen Hypertrophie involviert. So konnte in einem Hamstermodell mit vererbter Myokardhypertrophie gezeigt werden, dass die Induktion des embryonalen Genprogrammes vor dem Einsetzen der hämodynamischen Überlast erfolgt (Di Nardo et al., 1997). Zur Identifikation der beteiligten Differenzierungs- bzw. Induktionsgene und zum Verständnis der Mechanismen, die zur Hypertrophie des Herzens führen, erscheint es daher sinnvoll, in genetisch bedingten Tiermodellen für Hypertrophie nach solchen Genen zu suchen, die maßgeblich an der Entwicklung und Differenzierung des Herzens beteiligt sind.
1.4 Modellsysteme kardiovaskulärer Erkrankungen

Für die Untersuchung kardiovaskulärer Erkrankungen stehen eine Reihe verschiedener Modellsysteme zur Verfügung, die zum Verständnis der Krankheitsentwicklungen beitragen sollen. Neben Zellkulturen von Kardiomyocyten gibt es diverse Tiermodelle, die auch für die Erforschung der kardialen Hypertrophie angewendet werden. Unter diesen sind die vorrangigen Forschungsobjekte die Maus und diverse Rattenstämme. Für die Maus existieren mittlerweile eine Reihe von knock out Varianten (Brancaccio et al., 2003; Izumiya et al., 2003). Des weiteren gilt der Kardiomyopathische Hamster (CM-Hamster, eine δ-Sarcoglycan-Mangelmutante) als repräsentatives Modell für erbliche dilatierte und hypertrophe Kardiomyopathien des Menschen (Di Nardo et al., 1997; Sakamoto et al., 1997). Ebenfalls zu erwähnen sind Untersuchungen des Muskelcytoskeletts im Sarkomer beim Zebrafisch (Clark et al., 2002; Hoshijima et al., 2002).

Demgegenüber steht das Tiermodell der Spontan Hypertensiven Ratte (SHR). Sie wird schon seit Jahren mit ihrem Kontrollstamm, der Wistar-Kyoto-Ratte (WKY), erfolgreich für eine Vielzahl von Studien des Blutdrucks und für die Erforschung kardiovaskulärer Krankheiten verwendet (Dalton et al., 2000; Jurkovicova et al., 2001; Bell et al., 2002; Naito et al., 2002). Die SHR wurde 1963 von Okamoto (Kyoto School of Medicine) aus einer Kreuzung eines Wistar-Kyoto Männchens mit Bluthochdruck und eines Weibchens mit leicht erhöhtem Blutdruck entwickelt. Es erfolgte eine Selektion der Nachkommen von Bruder-Schwester-Kreuzungen auf Bluthochdruck3. Männliche SHR bilden im Alter von 3-4 Monaten spontan eine arterielle Hypertonie (Bluthochdruck) mit einem systolischen Blutdruck größer als 200 mmHg aus, der im weiteren Krankheitsverlauf eine Hypertrophie des linken Herzen und terminales Herzversagen folgen. Einen Überblick hierzu gibt Abb. 1.3 (Gray, 1984; Brilla et al., 1991; Masuzaki et al., 1996). Von der gleichen, oben genannten Einrichtung stammt die WKY als Auszucht einer Linie von Wistar-Ratten. Aufgrund des gemeinsamen Ursprungs ist die WKY-Ratte der geeignete Kontrollstamm zur SHR.

Die Entwicklung der Hypertonie ist, wie beim Menschen, multifaktoriell bestimmt. Durch die Konstruktion kongener Rattenstämme konnten Kandidatenregionen (quantitative trait loci; QTLs) für den Blutdruck regulierende Gene auf den Chromosomen 1, 4, 5, 8, 10, 13 und 18 lokalisiert werden (Hilbert et al., 1991; Kreutz et al., 1995; Zhang et al., 1996; Kovaes et al., 1997a; Kovaes et al., 1997b; Kren et al., 1997), die im homozygoten Zustand in der SHR den Grad der Hypertonie absenken. QTLs für die Entwicklung einer Herzhyptrophie konnten bislang auf den Chromosomen 1, 2 und 14 der Ratte identifiziert werden (Clark et al., 1996; Innes et al., 1998). Die Diversität der Kandidatenregionen für Bluthochdruck und Herzhyptrophie weisen auf unabhängige

3 Quelle: Produktkatalog der Firma Charles River Deutschland, Sulzfeld
genetische Ursachen für beide Krankheitsbilder hin, was in Abb. 1.3 durch den grün-roten Doppelpfeil (links neben dem durchgehenden, roten Pfeil) dargestellt ist.

<table>
<thead>
<tr>
<th>Ratte</th>
<th>Alter (Wochen p.n.)</th>
<th>Phänotyp</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHR</td>
<td>4</td>
<td>normotensiv</td>
</tr>
<tr>
<td>SHR</td>
<td>12</td>
<td>hypertensiv</td>
</tr>
<tr>
<td>SHR</td>
<td>26</td>
<td>hypertroph</td>
</tr>
</tbody>
</table>

Abb. 1.3: Entwicklungsstadien der SHR. Die Frage, ob die Hypertrophie eine Folge der Hypertonie oder eine eigenständige Entwicklung darstellt, ist durch die Pfeile symbolisiert.

1.5 Identifizierung von differentiell exprimierten Genen

Für die Identifizierung spezifischer im Herzen exprimierter Gene wurden erfolgreich die Methoden des differential display (Masuda et al., 1997; Sirokman et al., 1997) und das large scale screening and sequencing von Herz-cDNA-Bibliotheken eingesetzt (Hwang et al., 1997). In einer Weiterentwicklung kann die Identifizierung differentiell exprimierter Gene auch mittels der Methode einer PCR-gestützten, subtraktiven cDNA-Selektion erfolgen (Diatchenko et al., 1996; Gurskaya et al., 1996). Diese Methode erlaubt sowohl die Differenzierung der ausschließlich Expression eines Gens in einem von zwei Vergleichsgeweben (oder Entwicklungsstadien) als auch die quantitative Unterscheidung der Expressionslevel eines Gens in beiden Geweben. Die Methode der subtraktiven cDNA-Selektion erhöht die Sensitivität der Methode des differential display durch die zweimalige Subtraktion redundanter cDNAs aus unterschiedlichen Geweben und die Anreicherung der unterschiedlich exprimierten Sequenzen durch die PCR um mehr als das 1000-fache (Diatchenko et al., 1996). Diese starke Anreicherung selektiv exprimierter Transkripte erhöht deutlich die Wahrscheinlichkeit, auch die auf sehr niedrigem Niveau exprimierten Gene, zu denen z. B. auch Differenzierungsgene oder Transkriptionsfaktoren gehören können, zu identifizieren. Die Sensitivität der Methode sollte es daher auch ermöglichen, eine differentielle Genexpression in der Hypertrophieentwicklung des Herzens im Tiermodell der SHR zu erfassen. Erfolgreich wurde die Methodik bzw. eine Variante (cDNA representational difference analysis, cDNA-RDA) bereits für die Identifikation differentiell exprimierter Gene in
Entwicklungsprozessen der Embryogenese (Wada et al., 1997), der Krebsentwicklung (Gress et al., 1997) und bei Patienten mit DiGeorge-Syndrom (Sirotkin et al., 1997) oder Down-Syndrom mit kongenitalen Herzfehlern (Egeo et al., 1998) eingesetzt.

1.6 Ziel der Arbeit

Das Ziel der vorliegenden Arbeit war die Identifikation differentiell exprimierter Gene in der Entwicklung der Myokardhypertrophie am Tiermodell der SHR. Aufgrund ihrer Eigenschaften (Abschnitt 1.4) und der stufenweisen Entwicklung des Krankheitsverlaufes erscheint die SHR als ein geeignetes genetisches Modell zum Studium der Entwicklung von Hypertonie und Herzhypertrophie. Im Besonderen erlaubt das Modell der SHR auch die Analyse der molekularen Mechanismen, die das Herz durch mechanische Überlast (Hypertonie) zur Hypertrophierung veranlassen. Mittels der erwähnten Methode einer PCR-gestützten subtraktiven cDNA-Selektion sollte durch subtraktiven Vergleich der Expressionsmuster von Genen im Herzen der SHR während der Entwicklung vom normotensiven zum hypertrophen Tier (Abb. 1.3; nach 4, 12 und 26 Wochen p.n.) solche Gene identifiziert werden, deren Induktion oder Repression die hypertrope Konversion des Herzens initiieren bzw. charakterisieren. Der subtraktive Vergleich des Expressionsmusters im Herzen der SHR mit etablierter Hypertonie (Abb. 1.3; 12 Wochen p.n.; grüner Pfeil) sollte zusätzliche Erkenntnisse liefern, inwieweit die Hypertonie der SHR eine Vorbedingung für die hypertrophe Konversion des Herzens ist (hämodynamische Überlast) oder eine parallele, unabhängige Entwicklung darstellt. Die identifizierten Gene von normotensiven, hypertenen und hypertrophen Ratten sollten ansequenziert, quantitativ durch real-time RT-PCR analysiert und ihre chromosomale Colokalisation mit bekannten QTLs für Herzhypertrophie überprüft werden. Aus diesen Informationen der Kandidatengene für die Herzhypertrophierung sollten sich Hinweise für Induktions- oder Signalkaskaden im sich hypertroph entwickelnden Herzventrikel der SHR ableiten lassen.
2 Material und Methoden

2.1 Chemikalien

Soweit nicht anders genannt, wurden die verwendeten Chemikalien, Enzyme und Feinchemikalien von folgenden Firmen bezogen:

- Amersham Pharmacia Biotech, Freiburg
- Carl Roth GmbH + Co, Karlsruhe
- Clontech, Heidelberg
- Fluka, Neu-Ulm
- Gibco BRL, Eggenstein
- Merck KgA, Darmstadt
- Roche Diagnostics, Mannheim
- Sigma, Deisendorf

2.1.1 Laborchemikalien und Radiochemikalien

- Advantage® UltraPure dNTPs, Clontech
- ExpressHyb™ Hybridization Solution, Clontech
- Hybond™-N+, Amersham Life Science
- MicroSpin™ G-50 Columns, Amersham Pharmacia Biotech
- ULTRAhyb™, Ambion
- [α-32P]dCTP, MP Biochemicals, Eschwege

2.1.2 Enzyme und vorgefertigte Systeme (Kits)

- Advantage® 2 Polymerase Mix (50×; A2-Polymerase), Clontech
- Omniscript™ Reverse Transcriptase, Qiagen
- AdvanTAge™ PCR Cloning Kit, Clontech
- Clontech PCR-Select™ cDNA Subtraction Kit, Clontech
- FlexiPrep™ Kit, Amersham Pharmacia Biotech
- NucleoSpin® Extraction Kit, Clontech
- PCR-Select Differential Screening Kit, Clontech
- PolyATtract® System 1000, Promega
- Ready-To-Go™ DNA Labelling Beads (-dCTP), Amersham Pharmacia Biotech
- Thermo Sequenase Dye Terminator Cycle Sequencing Premix Kit, Amersham Pharmacia Biotech
2.1.3 Molekulargewichts-Standards

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>NS</th>
<th>Größenbereich</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>pUC Marker 8</td>
<td>DNA</td>
<td>0,019-1,12 kb</td>
<td>MBI Fermentas, Lithuania</td>
</tr>
<tr>
<td>Lambda DNA/Eco130I; M 16</td>
<td>DNA</td>
<td>0,42-19,33 kb</td>
<td>MBI Fermentas, Lithuania</td>
</tr>
<tr>
<td>Marker I</td>
<td>RNA</td>
<td>0,3-6,9 kb</td>
<td>Roche, Mannheim</td>
</tr>
<tr>
<td>Marker II</td>
<td>RNA</td>
<td>1,5-6,9 kb</td>
<td>Roche, Mannheim</td>
</tr>
</tbody>
</table>

2.1.4 Gebrauchslösungen

<table>
<thead>
<tr>
<th>Blocklösung (Dot Blot)</th>
<th>10 mg/ml</th>
<th>Lachsspermien-DNA, geschnitten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,3 mg/ml</td>
<td>Oligonukleotide, den Nested Primern & komplementären Sequenzen entsprechend</td>
</tr>
<tr>
<td>Blocklösung (Northern)</td>
<td>100 µl</td>
<td>Lachsspermien-DNA (6mg/ml)</td>
</tr>
<tr>
<td></td>
<td>100 µl</td>
<td>Plazenta-DNA (1:10)</td>
</tr>
<tr>
<td>DEPC-H₂O</td>
<td>1,0 ml</td>
<td>Diethylpyrocarbonat (DEPC) zu 1 l ddH₂O (0,1 % v/v), 1 h rühren, autoklavieren</td>
</tr>
<tr>
<td>20× EDTA/ Glycogen</td>
<td>0,2 M</td>
<td>EDTA</td>
</tr>
<tr>
<td></td>
<td>1,0 mg/ml</td>
<td>Glycogen</td>
</tr>
<tr>
<td>LB-Medium (Luria-Bertani)</td>
<td>1,0 %</td>
<td>Bacto-Trypton</td>
</tr>
<tr>
<td></td>
<td>0,5 %</td>
<td>Hefeextrakt</td>
</tr>
<tr>
<td></td>
<td>1,0 %</td>
<td>NaCl</td>
</tr>
<tr>
<td>10× MOPS</td>
<td>200 mM</td>
<td>3-[N-Morpholino]-Propansulfonsäure</td>
</tr>
<tr>
<td></td>
<td>50 mM</td>
<td>Natriumacetat</td>
</tr>
<tr>
<td></td>
<td>10 mM</td>
<td>EDTA</td>
</tr>
<tr>
<td>pH 7,0 mit NaOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10× PBS</td>
<td>145 mM</td>
<td>NaCl</td>
</tr>
<tr>
<td></td>
<td>70 mM</td>
<td>Na₂HPO₄</td>
</tr>
<tr>
<td></td>
<td>30 mM</td>
<td>KH₂PO₄</td>
</tr>
<tr>
<td>1× PBS pH 7,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10× Probenpuffer</td>
<td>50 %</td>
<td>Glycerin</td>
</tr>
<tr>
<td></td>
<td>0,25 %</td>
<td>Bromphenolblau in TE</td>
</tr>
<tr>
<td>5× RNA-Ladepuffer</td>
<td>16 µl</td>
<td>gesättigtes Bromphenol-Blau</td>
</tr>
<tr>
<td></td>
<td>80 µl</td>
<td>EDTA, 500 mM, pH 8,0</td>
</tr>
<tr>
<td></td>
<td>720 µl</td>
<td>Formaldehyd, 37 % (=12,3 M)</td>
</tr>
<tr>
<td></td>
<td>2,0 ml</td>
<td>Glycerol, 100 %</td>
</tr>
<tr>
<td></td>
<td>3,1 ml</td>
<td>Formamid</td>
</tr>
<tr>
<td></td>
<td>4,0 ml</td>
<td>10× MOPS</td>
</tr>
<tr>
<td>Gesamt-Vol. mit DEPC-H₂O</td>
<td></td>
<td>auf 10 ml bringen</td>
</tr>
<tr>
<td>Stop-Lösung</td>
<td>0,1 M</td>
<td>EDTA</td>
</tr>
<tr>
<td></td>
<td>0,5 mg/ml</td>
<td>Hefe-tRNA</td>
</tr>
</tbody>
</table>
Material und Methoden

50× TAE
242 g Tris
57 ml Eisessig
37,2 g EDTA

10× TBE
89 mM Tris
89 mM Borsäure
2,5 mM Na-EDTA

TE
10 mM Tris-HCl (pH 8,0)
1,0 mM EDTA

Waschlösung (Dot Blot) 1
2,0× SSC / 0,1 % SDS (niedrig stringent)

Waschlösung (Dot Blot) 2
0,1× SSC / 0,1 % SDS (hoch stringent)

Waschlösung (Northern) 1
2,0× SSC / 0,5 % SDS (niedrig stringent)

Waschlösung (Northern) 2
0,2× SSC / 0,5 % SDS (hoch stringent)

2.1.5 Sequenzen und Herkunft der synthetischen Oligonukleotide

Die verwendeten Oligonukleotide (Primer) wurden von den Firmen Amersham Pharmacia Biotech, Biosource (Belgien) und Invitrogen (Karlsruhe) synthetisiert.

Primer-Sequenzen (5’ → 3’)

cDNA Synthese Primer: TTTTGTACAAGCTT

bAct-Fw: AAGTGTGACGTTGACATCCG
bAct-Rv: ACATCTGCTGGAAGGTGGAC
GAPDH 5’: ACCACAGTCCATGCCATCAC
GAPDH 3’: TCCACCACCCTGTTGCTGTA
77-Fw: AACAGACGAAGAATGACCCG
77-Rv: AGTACTCTGACCTCGGAAATC
92-Fw: TTATTTCTTCAGCGTGGCTC
92-Rv: AGGGATCCACACAGGATTTG

Nested PCR-Primer 1:
TCGAGCGGCCGCCCCGGCAGGT
(komplementär zum 3’-Bereich von Adapter 1)

Adapter 1:
CTAATACGACTCACTATAAGGGCTCGAGCGGCCGCCCCCGGGAAGT
GGCCCGTCCA
PCR-Primer 1:
CTAATACGACTCACTATAGGGC
(komplementär zum 5’-Bereich von Adapter 1 und Adapter 2R)

Adapter 2R:
CTAATACGACTCACTATAGGGCAGCGTGTCGCGGCCGAGGT
CCGGCTCCA

Nested PCR-Primer 2R:
AGCGTGTCGCGGCCGAGGT
(komplementär zum 3’-Bereich von Adapter 2R)

2.2 Versuchstiere

2.2.1 Blutdruck- und Herzfrequenzmessungen bei den Ratten

2.2.2 Organentnahme

Die Tiere wurden mit Halothan (Rüsch, Böblingen) narkotisiert und durch Durchtrennung der Halswirbelsäule getötet. Die Ratten wurden gewogen, der Brustkorb geöffnet, die Herzen entnommen und in eiskaltem 1× PBS-Puffer gespült. Nach der Bestimmung des Herzgewichts erfolgte sofort als Vorbereitung der RNA-Isolierung (siehe Abschnitt 2.4) die Aufnahme des Gewebes in GTC-Extraktpuffer (Promega) mit β-Mercaptoethanol (βME, 48,7 % βME / ml GTC-Puffer). Dazu wurden die Herzen mit einem Ultra-Turrax (IKA Labortechnik, Staufen) in 800 µl Puffer /100 mg Gewebe auf Eis homogenisiert und bei -20°C zur baldigen Weiterverarbeitung eingefroren.

2.3 Molekularbiologische Standardmethoden

2.3.1 Agarosegel-Elektrophorese

Die elektrophoretische Auftrennung der DNA erfolgte in 1-2 %-igen Agarosegelen (w/v) in 1× TAE-Puffer. Die Proben wurden in 0,1 Vol. 10× Probenpuffer aufgenommen, mit einem Längenstandard aufs Gel aufgetragen und bei 5-10 V/cm aufgetrennt. Das Gel wurde in EtBr-Lösung (0,7 µg/ml) gefärbt, die DNA-Banden auf einem UV-Transilluminator visualisiert und fotografisch dokumentiert.

2.3.2 Polyacrylamidgel-Elektrophorese (PAGE)

Polyacrylamidgele wurden für die elektrophoretische Auftrennung von DNA-Fragmenten unter 500 bp Länge verwendet. Es wurden 14 cm × 16 cm große Gele mit 1,5 mm Dicke und einem Acrylamidanteil von 4-12 % eingesetzt. Die Elektrophorese wurde in Vertikalkammern für 2-3 Stunden bei konstanter Spannung von 5-8 V/cm in 1× TBE-Puffer durchgeführt. Die DNA konnte durch Ethidiumbromidfärbung unter UV-Bestrahlung sichtbar gemacht werden (siehe 2.3.1).
2.3.3 Isolierung von DNA-Fragmenten aus Agarosegelen

DNA-Fragmente und PCR-Produkte wurden nach elektrophoretischer Auftrennung folgendermaßen aus dem Gel isoliert. Zwei 1,5 ml Tubes wurden ineinander gesteckt, wobei das obere im Boden ein kleines Loch und innen einen Filterpapiertrichter enthielt. Die unter UV-Licht als Gel-Blöckchen ausgeschnittenen DNA-Banden wurden in obiges System gegeben, mit 50 µl ddH₂O überschichtet und 20 s bei 10000 rpm zentrifugiert. Die DNA wurde anschließend gefällt (siehe Abschnitt 2.3.4).

2.3.4 Phenol-/Chloroform-Extraktion und Fällung von Nukleinsäuren

Zur Aufreinigung von DNA/ RNA wurde 1 Vol. eines Phenol-/Chloroform-Gemisches (1:1) zugegeben und 5 min bei 14.000 rpm zentrifugiert. Die Oberphase wurde mit Chloroform extrahiert. Die DNA/RNA wurde aus der wässrigen Oberphase durch 0,1 Vol. NaAc (3 M) und 2,5 Vol. 96 % EtOH (-20°C) bzw. 0,7 Vol. Isopropanol bei -20°C für 30 min präzipitiert und bei 14000 rpm für 20 min/4°C pelletiert. Das Pellet wurde zweimal mit 70 % EtOH gewaschen und in ddH₂O aufgenommen.

2.3.5 Bestimmung der Konzentration und Reinheit von DNA und RNA

Die Quantifizierung der DNA bzw. RNA erfolgte mit dem Spektrophotometer Ultrospec III (Pharmacia Biotech). Der A_{260}-Wert erlaubt die Berechnung der DNA-bzw. RNA-Konzentration der Probe. Eine A_{260}-Einheit entspricht ca. 50 µg/ml an ds DNA und 40 µg/ml an ss DNA und RNA. Der A_{320}-Wert gibt einen Hinweis auf Verunreinigungen mit Salzen, das Verhältnis A_{260}/A_{280} über die Reinheit (1,8 bzw. 2,0). Die Konzentration z. B. von DNA errechnet sich wie folgt:

\[c_{DNA} = (A_{260} - A_{320}) \times f \times 50 \, \mu g/\mu l \]

c_{DNA}, Konzentration; A, Absorption bei entsprechender Wellenlänge; f, Verdünnungsfaktor

2.3.6 Isolierung von Plasmid-DNA

2.3.7 Herstellung von Stammkulturen

Es wurden 850 µl Bakterienkultur (siehe 2.3.6) mit 150 µl sterilem Glycerin in einem 1,5 ml-Tube gemischt. Die Glycerin-Stocks wurden sofort für 5 min auf Trockeneis gestellt, um ein Sedimentieren der Bakterien zu verhindern, und bei -70°C gelagert.

2.4 Isolierung von poly(A⁺)-RNA

Für die Isolierung von poly(A⁺)-RNA aus Gewebe wurden der PolyATtract® System 1000-Kit eingesetzt und die Herzmuskelzellen zusätzlich mit Proteinase K zum optimalen Aufschluss behandelt. Das homogenisierte Herzgewebe (Abschnitt 2.2.2) wurde in 70°C Verdünnungspuffer (1,6 ml/100 mg Gewebe; enthält βME) aufgenommen. Nach Zugabe von 35 µl Proteinase K (20 mg/ml) pro 100 mg Gewebe wurde 10 min bei 55°C und nach Zugabe der biotinylierten oligo(dT)-Sonde (100 pmol/100 mg Gewebe) 5 min bei 70°C inkubiert. Das Lysat wurde in sterilen 15 ml-Tubes 10 min bei 12000 rpm/RT zentrifugiert. Die Streptavidin MagneSphere® Paramagnetic Particles (SA-PMPs, 1,2 ml/100 mg Gewebe) wurden abseits vom Magnetständer in ein 15 ml-Tube gegeben und durch Neigen in die Horizontale im Magnetständer eingefangen. Die Partikel wurden in 1,2 ml/100 mg Gewebe 0,5× SSC resuspendiert, zweimal gewaschen und wieder in 0,5× SSC resuspendiert. Es folgten die Zugabe des klaren Überstandes der Zentrifugation zu den SA-PMPs (entfernt vom Magnetständer) und Inkubation für 2 min bei RT. Die SA-PMPs wurden mittels Magnetständer eingefangen und in 1 ml/100 mg Gewebe 0,5× SSC resuspendiert und im selben Puffer gewaschen. Es folgte die Elution der RNA in 800 µl/100 mg Gewebe DEPC-H₂O, die Entfernung der SA-PMPs und die Bestimmung der Konzentration der RNA. Zur Verhinderung der RNA-Degradation wurden alle Arbeiten mit DEPC-H₂O durchgeführt.

2.5 Subtraktive Suppressions-Hybridisierung (cDNA-Subtraktion)

Die subtraktive Hybridisierung ist eine leistungsfähige Methode, die den Vergleich zweier mRNA-Populationen ermöglicht und Klone liefert, welche in der einen Population exprimiert werden und in der anderen nicht. Es wurden die mRNAs der Herzen von SHR im normotensiven (SHR-04), im hypertoten (SHR12) und im hypertrophen Stadium (SHR-26) miteinander verglichen (Abb. 2.1). Zur Normalisierung gegen die regelrechte Genexpression in der Herzentwicklung wurden die Herzen von Kontrolltieren des Wistar-Kyoto-Rattenstammes verwendet (Abb. 2.1). Für die subtraktive Hybridisierung wurde der Clontech PCR-Select™ cDNA Subtraction Kit verwendet. Putativ differentiell exprimierte Klone wurden durch ein differenzielles Screening...
überprüft und durch Northern-Hybridisierung sowie Sequenzierung weiter analysiert. mRNA-Populationen, die spezielle (differenziell exprimierte) Transkripte enthalten, werden als *Tester* bezeichnet (siehe Abb. 2.2). Die Referenz-RNA ist der *Driver*.

Abb. 2.1: Überblick über die durchgeführten cDNA-Subtraktionen

2.5.1 Molekulare Grundlagen der PCR-gestützten cDNA-Subtraktion

In Abb. 2.2 sind die molekularen Abläufe der PCR-gestützten cDNA-Subtraktion dargestellt, die dem Benutzerhandbuch des Clontech PCR-Select™ cDNA Subtraction Kit entnommen sind. Aus poly(A⁺)-RNA von zwei zu vergleichenden Rattenherzen wird die cDNA synthetisiert. Tester und Driver werden mit *Rsa I* geschnitten, was in glatten DNA-Enden resultiert. Die Tester-cDNA wird aufgeteilt und jede Hälfte mit einem unterschiedlichen cDNA-Adapter ligiert. Die Enden der Adapter besitzen keine Phosphatgruppe, so dass nur ein Strang eines jeden Adapters an das 5'-Ende der cDNA passt. Die beiden Adapter besitzen identische Sequenzabschnitte, was nach Auffüllung der fehlenden Adapterstränge die Anlagerung der PCR-Primer ermöglicht.

Alle in Abb. 2.2 dargestellten Moleküle werden dann mittels PCR amplifiziert, um die gewünschten differentiell exprimierten Sequenzen anzureichern. Während der PCR werden ss cDNAs mit und ohne Adapter und ds cDNAs ohne Adapter aufgrund der fehlenden Primerbindungsstellen nicht amplifiziert. Moleküle, die zwar ds sind, aber nur an einem Ende Adapter haben, besitzen nur eine Primerbindungsstelle, so dass nur eine lineare Amplifikation möglich ist. Wegen des so genannten Suppression PCR-Effektes bilden die meisten ds Tester-cDNAs mit gleichen Adaptoren an ihren Enden Haarnadelstrukturen, die eine exponentielle Amplifikation verhindern. Suppression tritt auf, wenn sich nach dem Denaturierungsschritt an den Enden der ss cDNA die komplementären Sequenzen der Adapter befinden. Während jedes Annealing-Schrittes (Anlagerung) bevorzugt die Hybridisierungskinetik sehr stark - stärker als die Anlagerung der kürzeren Primer - die Ausbildung von haarnadelförmigen Sekundärstrukturen, die eine Primeranlagerung verhindern. Selbst wenn die Primeranlagerung einmal unspezifisch vorkommen sollte, würde im nächsten Zyklus die weitere Amplifikation des neu synthetisierten cDNA-Stranges durch den beschriebenen Effekt effizient unterdrückt werden. Lediglich ds Tester-cDNAs mit zwei ungleichen Adaptoren an ihren Enden können exponentiell amplifiziert werden und stellen die normalisierten, differentiell exprimierten Sequenzen dar. Durch eine zweite PCR-Amplifikation mit nested Primern werden erneut unspezifische PCR-Produkte reduziert und differentiell exprimierte Sequenzen angereichert.

2.5.2 Erst- und Zweit-Strang-Synthese der cDNA

Von Tester und Driver wurden jeweils 2 µg poly(A⁺)-RNA mit 10 pmol cDNA Synthesis Primer für 2 min bei 70°C in einem Thermocycler und danach auf Eis inkubiert. Die Erststrangsynthese wurde bei 42°C für 90 min mit 20 U AMV Reverse Transcriptase durchgeführt. Dieser Schritt fand im Hybridisierungsofen statt, um niedrigere Reaktionseffizienzen durch Verdunstung zu vermeiden. Direkt anschließend erfolgte die Zweitstrangsynthese durch Zugabe eines Enzymcocktails, bestehend aus
DNA-Polymerase I (6 U/µl), RNase H (0,25 U/µl) und E. coli DNA-Ligase (1,2 U/µl), und Inkubation für 2 Stunden bei 16°C. Um glatte Enden zu erzeugen, wurden 6 U T4 DNA-Polymerase hinzu gegeben und für weitere 30 min bei 16°C inkubiert. Die Reaktion wurde durch die Zugabe von 4 µl 20× EDTA/ Glycogen beendet. Die synthetisierte ds cDNA wurde durch Phenol : Chloroform : Isoamylalkohol-Extraktion (25:24:1) und Chloroform : Isoamylalkohol-Reextraktion (24:1) gereinigt und durch Zugabe von NH₄OAc (Endkonzentration 400 mM) und 2 Vol. 100 % EtOH präzipitiert. Nach Zentrifugation bei 13000 rpm/ 4°C für 20 min wurde das Pellet mit 70 % EtOH gewaschen, luftgetrocknet und in 50 µl ddH₂O gelöst. Von der synthetisierten ds cDNA wurden 5 µl für eine Agarosegel-Elektrophorese eingesetzt.

2.5.3 Restriktionsansatz: Rsa I-Spaltung

Die übrigen 45 µl der synthetisierten ds Tester- und Driver-cDNA wurden mit 15 U Rsa I für 1 h geschnitten, um kürzere, glatte ds cDNA-Fragmente mit einer Größe von ca. 0,2-1,2 kb zu generieren. Nach Beendigung der Reaktion mit 1× EDTA/ Glycogen wurde die Effizienz der Rsa I-Spaltung durch Agarosegel-Elektrophorese analysiert. Die cDNA-Fragmente wurden gereinigt wie in Abschnitt 2.5.2 beschrieben.

2.5.4 Adapterligation

Um zu ermöglichen, dass speziell nur Tester-cDNAs nach der Hybridisierung amplifiziert werden, aber nicht Driver-cDNAs, wurden nur an die Rsa I geschnittenen Tester-cDNA-Fragmente Adapter ligiert. Die Tester-cDNA wurde geteilt in Tester-cDNA 1 und Tester-cDNA 2 und an jede Gruppe der entsprechende Adapter ligiert: Adapter 1 bzw. Adapter 2R (siehe auch Abb. 2.3). Die Reaktion wurde über Nacht bei 16°C mit 400 U T4-DNA-Ligase durchgeführt, mit 1× EDTA/ Glycogen gestoppt und die Ligase bei 72°C für 5 min hitzedeaktiviert. Anschließend wurde mittels eines PCR-Experimentes die Ligationseffizienz ermittelt, um sicherzustellen, dass wenigstens 25 % der cDNAs Adapter an beiden Enden tragen. Dazu war die PCR mit komplementären Primern zu den ligierten Adaptern und GAPDH-Primern derart gestaltet, dass nur cDNA-Fragmente amplifiziert wurden, die die Adapter-cDNA-Verbindung von Tester 1 bzw. Tester 2 überspannen. Das soll beispielhaft an Tester 1 verdeutlicht werden: Die Amplifikation von Tester 1-1 mit den Primern GAPDH 5’ und GAPDH 3’ stellt einen imaginären Basiswert von 100 % dar, wogegen mit dem Primerpaar PCR Primer 1/ GAPDH 3’ Schätzungen über die prozentuale Ligationseffizienz möglich sind. Die PCR-Produkte werden auf ein Agarosegel aufgetragen und die Bandenintensitäten verglichen.
2.5.5 Erste und zweite Hybridisierung

Tab. 2.1: Übersicht über den Hybridisierungsansatz zweier paralleler cDNA-Subtraktionen.

fw: vorwärts; rv: rückwärts; sub: subtrahiert; HS: Hybridisierungsprobe

<table>
<thead>
<tr>
<th></th>
<th>SHR-12 rv ⇐⇒ fw SHR-26</th>
<th>WKY-26 rv ⇐⇒ fw SHR-26</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hybridisierung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHR-26 HS₁</td>
<td>SHR-26 HS₁</td>
<td>WKY-26 HS₁</td>
</tr>
<tr>
<td>SHR-12 HS₁</td>
<td>SHR-12 HS₂</td>
<td>WKY-26 HS₂</td>
</tr>
<tr>
<td>SHR-12 HS₂</td>
<td>SHR-26 HS₁</td>
<td>WKY-26 HS₁</td>
</tr>
<tr>
<td>SHR-26 HS₂</td>
<td>SHR-26 HS₂</td>
<td>WKY-26 HS₂</td>
</tr>
<tr>
<td>SHR-26, fw-sub</td>
<td>SHR-12, rv-sub</td>
<td>SHR-26, fw-sub</td>
</tr>
<tr>
<td>SHR-26, fw-sub</td>
<td>SHR-26, rv-sub</td>
<td>WKY-26, rv-sub</td>
</tr>
</tbody>
</table>

Die zweite Hybridisierung, bei der die Proben der ersten Hybridisierung miteinander gemischt wurden und denen denaturierte Driver-cDNA zugegeben wurde, fand bei 68°C über Nacht statt. Es entstanden neue Hybride mit unterschiedlichen Adapters an jedem Ende, welche die differentiell exprimierten cDNAs des Testers repräsentierten.

2.5.6 Erste und zweite PCR-Amplifikation

Die differentiell exprimierten cDNAs aus dem vorangegangenen Absatz wurden selektiv durch zwei PCR-Reaktionen amplifiziert. Vor der Amplifikation wurden die fehlenden Stränge der Adapter durch einen Präinkubationsschritt bei 75°C für 5 min in Gegenwart von A2-Polymerase aufgefüllt. Die erste PCR-Reaktion wurde mit Primer 1 durchgeführt, der an beide Adapter1 und 2R binden kann, mit 27 Zyklen bei 68°C *Annealing*-Temperatur. Eine zweite PCR mit 12 Zyklen und 68°C *Annealing*
Temperatur wurde mit Nested Primer 1 und 2R durchgeführt, die an die Adapter 1 bzw. 2R binden können. Die PCR-Produkte beider PCRs wurden mittels Agarosegel-Elektrophorese (2 %/ 1× TAE) analysiert. Das Produkt der zweiten Amplifikation enthält die angereicherten differenziell exprimierten cDNAs der Testerpopulation, die in unterschiedlicher Anzahl in der Original-mRNA vorkamen, und die jetzt zusätzlich in annähernd gleichen Verhältnissen vorliegen sollten.

2.6 Herstellung der subtraktiven cDNA-Bibliothek

Von den PCR-Produkten der zweiten Amplifikation wurden jeweils 3 µl für einen Ligationsansatz mit 50 ng pT-Adv-Vektor und 4 U (Weiss) T4-DNA-Ligase eingesetzt. Die Reaktionen wurden über Nacht bei 14°C inkubiert. Von jedem Ligationsansatz wurden 2 µl in 50 µl kompetente Zellen TOP10F' E. Coli transformiert. Dazu wurden die Zellen für 30 min auf Eis inkubiert, für 30 s im 42°C-Wasserbad hitzegeschockt und für 2 min auf Eis gestellt. Nach Zugabe von 250 µl SOC-Medium (RT, Gibco BRL) wurden die Zellen in einem Schüttelinkubator bei 37°C für 1 h bei 225 rpm inkubiert. Es wurden 50 µl und 200 µl jedes Transformationsansatzes auf LB/ X-Gal/ IPTG-Platten ausplattiert, die 50 µg/ml Ampicillin (50 mg/ml Stammlösung) enthielten. TOP10F’ E. coli Zellen exprimieren den lacZ-Repressor (LacIq), welcher die Transkription vom lac-Promoter verhindert. Durch die Zugabe von 40 µl X-Gal (40 mg/ml Stammlösung) und IPTG (100 mM Stammlösung) zu den Agarplatten kann lacZα exprimiert werden, was ein blue-white-Screening nach Inserts rekombinanter Bakterien (weiße Kolonien) ermöglichte. Die Platten wurden 18 h bei 37°C und danach noch für 2 h bei 4°C inkubiert, um eine korrekte Farbentwicklung zu ermöglichen.

2.7 Differentielles Screening

Differential Screening Kit, soll Falsch-Positive eliminieren, die beim Picken zufälliger Klone aus der subtraktiven Bibliothek für die Northern Blot-Analyse entstehen können.

2.7.1 Amplifikation der ersten PCR-Produkte

Die verdünnten Produkte der ersten Amplifikation der PCR-gestützten cDNA-Subtraktion aus Abschnitt 2.5.6 wurden hier amplifiziert. Wie in Abb. 2.3 ersichtlich ist, wird das zweite PCR-Produkt der Vorwärts-Subtraktion dazu benutzt, um die subtraktive Bibliothek herzustellen und um als vorwärts-subtrahierte cDNA-Sonde zu fungieren. Als subtrahierte Proben dienen die verdünnten PCR-Produkte der Vorwärts- und Rückwärts-Subtraktion. Um unsubtrahierte Sonden zu erhalten, wurden die Tester- und Driver-cDNA amplifiziert. Für die Tester-Sonde diente das erste PCR-Produkt der unsubtrahierten Tester-Kontrolle (Tube 1-c) der Vorwärts-Subtraktion als Ausgangsmaterial. Analog wurde die Driver-Sonde aus dem ersten PCR-Produkt der unsubtrahierten Tester-Kontrolle (Tube 2-c) der Rückwärts-Subtraktion hergestellt (Abb. 2.3).

Für die cDNA-Arrays wurden zwei Negativ-Hybridisierungskontrollen mitgeführt. Es handelt sich dabei um Plasmide, die ein von zwei cDNA-Inserts enthalten. Das cDNA 1R-Insert korrespondiert zu 320 bp eines Menschhomologen der Maus-mRNA für Testis-spezifisches Protein und das cDNA 2R-Insert zu 220 bp der menschlichen Semenogelin II-mRNA. Die beiden Negativ-Hybridisierungskontroll-cDNAs 1R und 2R enthalten die Sequenzen von Nested Primer 1 und 2R.

Für jede subtrahierte und unsubtrahierte cDNA-Sonde wurden zwei PCR-Reaktionen angesetzt, für die Negativ-Kontrollen nur eine. Jeder PCR-Ansatz enthielt: 1 × PCR-Puffer (10×), 0,2 mM dNTP-Mix (10mM), jeweils 0,4 µM Nested Primer 1 und 2R (10 µM), 1 × A2-Polymerase (50×) und DNA-Template. Die Reaktion wurde mit folgenden PCR-Bedingungen gestartet: 11 Zyklen mit 94°C für 10 sec, 68°C für 30 sec, 72°C für 1,5 min und ein abschließender Zyklus mit 72°C für 5 min. Von jeder Reaktion wurden 8 µl in einem 2 %-igen Agarosegel in 1× TAE aufgetrennt.
2.7.2 Reinigung von PCR-Produkten

Für die Aufreinigung der PCR-Produkte diente der NucleoSpin® Extraction Kit. Mit ihm werden DNA-Fragmente größer als 100 bp aus PCR-Produkten isoliert. Das Volumen wurde zunächst mit TE-Puffer (pH 7,0-7,5) auf 100 µl eingestellt. Nach Zugabe von 400 µl Puffer NT2 wurden die Proben in die NucleoSpin Extraktionssäulen gegeben und mit 13000 rpm zentrifugiert. Auf die Säulen wurden 700 µl Puffer NT3 gegeben und erneut mit 13000 rpm zentrifugiert. Der letzte Waschschritt wurde wiederholt und noch einmal zusätzlich 1 min zentrifugiert. Die DNA wurde aus den Säulen mit 50 µl Puffer NE durch Zentrifugation mit 13000 rpm für 1 min eluiert. Die Konzentration der gereinigten DNA wurde UV-spektrophotometrisch ermittelt.

2.7.3 Immobilisierung subtrahierter Klone in cDNA-Arrays

PCR-Amplifikation der cDNA-Inserts

Von den Agarplatten aus Abschnitt 2.6 wurden zufällig 96 weiße Kolonien gepickt und in 100 µl LB/Amp-Medium in einer 96-Loch-Platte bei 37°C als Schüttelkultur über Nacht wachsen gelassen. Für jeden Klon wurden 19 µl Master-Mix vorbereitet und mit 1 µl Bakterienkultur amplifiziert. Der Master-Mix enthielt für jede Reaktion in der Endkonzentration: 1× PCR-Puffer (10×), 0,2 mM dNTP-Mix (10mM), 0,4 µM Nested Primer 1 (10 µM), 0,4 µM Nested Primer 2R (10 µM) und 1× A2-Polymerase (50×). Der Thermocycler Perkin-Elmer GeneAmp 9600 wurde wie folgt programmiert: 1 Zyklus Prädenaturierung 94°C/ 30 sec, 23 Zyklen 95°C/ 10 sec, 68°C/ 3 min. Von jedem PCR-Produkt wurden 5 µl im Agarosegel (2 %/ 1× TAE) aufgetrennt.

Herstellung der cDNA-Dot Blots von PCR-Produkten

Vier identische Dot Blots wurden für die Hybridisierung mit den zwei subtrahierten und zwei unsubtrahierten cDNA-Sonden hergestellt. Für jede PCR-Reaktion mit amplifiziertem Insert wurden 5 µl Produkt und 5 µl einer 0,6 N NaOH-Lösung (frisch verdünnt aus 5 N NaOH) gemischt, um die DNA für die Hybridisierung zu denaturieren. Mit einer Mikropipette wurde 1 µl jeder cDNA als Dublette auf jede Membran aufgetragen. Die Blots wurden für 2-4 min in 0,5 M Tris-HCl (pH 7,5) neutralisiert, in ddH₂O gewaschen und getrocknet. Durch den UV Stratalinker™ 1800 (Stratagene) im Auto-CrossLink-Programm wurde die DNA mit der Membran quervernetzt.
2.7.4 Random Primer-Markierung der cDNA-Sonden

2.7.5 Hybridisierung mit der subtrahierten cDNA

2.7.6 Interpretation der Ergebnisse des differentiellen Screenings

Die folgende Tab. 2.2 gibt einen Überblick über die Auswahlkriterien, die angewandt wurden, um geeignete Kandidaten für differentiell exprimierte Transkripte aus der Vielzahl von Klonen der subtraktiven Bibliotheken zu ermitteln. Die Abb. 2.4 soll die Auswertung der Dot Blots an einem Beispiel bildlich veranschaulichen.
Tab. 2.2: Interpretation der Hybridisierungsergebnisse der Dot Blots

<table>
<thead>
<tr>
<th>Sonden-Typ</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>fw-sub</td>
<td>Klonen, die mit der vorwärts-subtrahierten und der unsubtrahierten Tester-Sonde hybridisieren, aber nicht mit der rückwärts- oder unsubtrahierten Driver-Sonde, sind fast immer (ca. 95 %) differentiell exprimierte Gene.</td>
</tr>
<tr>
<td>rv-sub</td>
<td>Krone, die nur mit der vorwärts-subtrahierten Sonde hybridisieren, sind starke Kandidaten für differentielle Expression. Sie werden als typischerweise weniger exprimierte Transkripte durch die Subtraktion angereichert.</td>
</tr>
<tr>
<td>uns-D</td>
<td>Krone, die mit beiden subtrahierten Sonden hybridisieren, aber mit unterschiedlicher Intensität, können vermutlich dann den differentiell exprimierten Genen zugeordnet werden, wenn die Signalintensität größer als 5-mal ist.</td>
</tr>
<tr>
<td>+</td>
<td>Krone, die nahezu gleich mit beiden subtrahierten und beiden unsubtrahierten Sonden hybridisieren, sind fast nie differentiell exprimiert.</td>
</tr>
<tr>
<td>−</td>
<td>Krone, die für keine der subtrahierten Sonden ein detektierbares Signal zeigen, präsentieren für gewöhnlich nicht-differentiell exprimierte cDNAs.</td>
</tr>
</tbody>
</table>

fw-sub, vorwärts-subtrahierte; rv-sub, rückwärts-subtrahierte; uns-T, nicht-subtrahierter Tester; uns-D, nicht-subtrahierter Driver

Abb. 2.4: Beispiel für die Auswertung der Dot Blots. Die Pfeile kennzeichnen differentiell exprimierte Kandidatenklone, die nur im subtrahierten Tester ein Hybridisierungssignal liefern.

Tester, subtrahiert

Tester, unsubtrahiert

Driver, subtrahiert

Driver, unsubtrahiert

selektierte cDNA-Klone
2.8 Northern Blot-Analyse

2.8.1 Denaturierende Formaldehyd-Agarosegel-Elektrophorese

Zur Vermeidung von Sekundärstrukturen durch intramolekulare Basenpaarung wurde die RNA unter denaturierenden Bedingungen elektrophoretisch aufgetrennt, was durch Zugabe von Formaldehyd zum Lauf- und Ladepuffer erreicht wurde. Für die Herstellung eines Gels mit einem Volumen von 100 ml wurden 1,0 g Agarose in 85 ml DEPC-H₂O und 10 ml 10× MOPS-Puffer aufgekocht. Nach Abkühlung auf ca. 65°C wurden 5,4 ml 37 %-iges Formaldehyd (12,3 M) zugegeben und das Gel gegossen. Es wurde für 30 min in 1× MOPS-Puffer aquilibriert und für 10 min bei 6 V/cm laufen gelassen. Die RNA-Proben (2 µg poly(A⁺)-RNA) wurden im entsprechenden Volumen 5× RNA-Ladepuffer aufgenommen, mit DEPC-H₂O auf ein Volumen von 25 µl gebracht, 10 min bei 65°C denaturiert. Der Lauf erfolgte in 1× MOPS-Puffer bei 20 V über Nacht in einer Elektrophoresekammer mit Pufferumwälzung. Das Gel wurde in EtBr-Lösung gefärbt und auf einem UV-Transilluminator dokumentiert.

2.8.2 Northern-Blotting

Um das Formaldehyd zu entfernen, wurde das Gel zweimal 20 min in ddH₂O gespült. Der eigentliche Transfer der RNA vom Gel auf eine Membran mit Nukleinsäurebindenden Eigenschaften (Hybond™-N⁺) erfolgte mittels Kapillarblotting. Dazu wurde ein in 20× SSC getränktes Filterpapier auf eine Glasplatte gelegt, sodass die überhängenden Ränder in eine mit 20× SSC gefüllte Fotoschale reichten. Darauf wurde das RNA-Gel gelegt und die nicht vom Gel bedeckte Fläche mit Parafilm abgedichtet. Auf das Gel wurde luftblasenfrei die in 2× SSC äquilibrierte Nylonmembran und darüber zwei ebenfalls angefeuchtete Filterpapiere gelegt. Dieses Blotting-Sandwich wurde mit einem Stapel saugfähigem Papier überschichtet und mit ca. 500 g Gewicht beschwert. Der Transfer der RNA erfolgte über Nacht. Im Anschluss wurde die Membran beschriftet, mit 2× SSC gespült, das Gel unter UV-Licht auf Rest-RNA überprüft und die RNA mit Hilfe eines UV Stratalinker™ 1800 (Stratagene), Auto-CrossLink-Programm, mit der Membran quervernetzt.
2.8.3 Radioaktive Markierung von DNA-Sonden

Die radioaktive Markierung der DNA-Sonden erfolgte mittels der Ready-To-Go™ DNA Labelling Beads (-dCTP), wie bereits in Abschnitt 2.7.4 beschrieben wurde. Hierbei wurden jedoch 0,7 µl cDNA (Produkte der Insertamplifikation aus 2.7.3) in 44 µl TE-Puffer gelöst und als Sonde eingesetzt.

2.8.4 Northern-Hybridisierung

2.9 Sequenzierung von DNA

Die cDNAs wurde mit dem Thermo Sequenase Dye Terminator Cycle Sequencing Premix Kit beidseitig ansequenziert. Dazu wurde die rekombinante DNA im Vorfeld entweder mittels Plasmidvektoren in Bakterien vermehrt und die Plasmid-DNA als Minipräparation isoliert (siehe 2.3.6) oder die DNA wurde aus dem Plasmid heraus direkt durch PCR amplifiziert (siehe 2.7.3) und die PCR-Produkte entweder direkt gereinigt (siehe 2.7.2) oder mittels Agarosegel-Elektrophorese aufgetrennt und die DNA-Fragmente aus dem Gel isoliert (siehe 2.3.3). Für die Sequenzierung wurden 0,5 - 2,0 µg ds Plasmid-DNA eingesetzt, die in 11 µl ddH₂O gelöst wurden. Für jede Reaktion wurden 8 µl Sequencing reagent premix, 1 µl Primer (10 µM) und 11 µl DNA-Template pipettiert. Im Robocycler Gradient 96 (Stratagene, Heidelberg) wurde folgendes Programm gestartet: 1 Zyklus Vordenaturierung 96°C/ 1 min, 27 Zyklen Denaturierung 96°C/ 30 s, Annealing 55°C/ 15 s und Elongation 60°C/ 4 min sowie 1 Zyklus 60°C/ 4 min. Die 20 µl der Reaktion wurden mit 7 µl 7,5 M NH₄Ac und 68 µl kaltem 100 % EtOH (-20°C) versetzt und für 10 min präzipitiert. Nach der Zentrifugation bei 12000 rpm/ 15 min/ 4°C wurde das Pellet mit 500 µl 70 % EtOH gewaschen, luftgetrocknet und in 4 µl Formamid-Ladepuffer resuspendiert. Die DNA wurde für 5 min bei 70°C denaturiert, auf Eis gestellt und 2 µl der Proben im Sequenziergel des automatischen Sequenziersystems ABI 377 (ABI, Weiterstadt) aufgetrennt und die Sequenz mit dem lasergekoppelten optischen System detektiert.
2.10 EDV-gestützte Sequenzanalyse

2.11 Real-time quantitative RT-PCR

2.11.1 Theoretischer Hintergrund

2.11.2 Reverse Transkription

Die cDNA-Synthese wurde mittels Omniscript™Reverse Transcriptase (RT) durchgeführt. Ein 20 µl-Ansatz bestehend aus 1× Puffer RT, dNTP-Mix aus je 0,5 mM dNTPs, 1 µM oligo(dT)-Primer, 10 U RNasin (Promega), 4 U Omniscript™RT, 2 µg poly(A⁺)-RNA und nukleasefreiem ddH₂O wurde für 60 min bei 37°C inkubiert und das Enzym durch 93°C für 5 min inaktiviert.

2.11.3 Real-time PCR

Die PCRs wurden im Light-Cycler Rotor Gene 2000 (Corbett Research) durchgeführt und wie folgt angesetzt: 0,2× SYBR Green I (Biozym, Oldendorf), 1× PCR-Puffer (10×), 0,2 mM dNTP-Mix (10mM), 0,4 µM Primer 1 (10 µM), 0,4 µM Primer 2 (10 µM) und 1× A2-Polymerase (50×). Zu 24 µl Master-Mix wurden 1 µl DNA-Template hinzu gegeben. Die PCR-Bedingungen waren wie folgt: Denaturierung bei 95°C/ 5 min, 30-35 Zyklen: Denaturierung 95°C/ 20 s, Annealing 60-65°C/ 20 s, Extension (Verlängerung) 72°C/ 30 s und Fluoreszenzmessung bei 82°C/ 15 s. Im Anschluss an die PCR wurden die Schmelzkurven der PCR-Produkt im Temperaturbereich von 70°C bis 99°C in 1°C-Schritten ermittelt.

2.11.4 Datenanalyse mittels comparative quantitation

Die Daten wurden mit Hilfe der Rotor Gene Analysesoftware, Version 4.6, ausgewertet. Die Quantifizierung der Proben erfolgte nach der so genannten comparative quantitation Methode (Herrmann [Corbett Research], 2002, unveröffentlicht), die
benutzt wird, um unterschiedliche Proben (z. B. verschiedene Entwicklungsstadien) mit einer Kontrolle zu vergleichen. Es handelt sich um eine real-time PCR-Analysetechnik, mit der eine Einschätzung der relativen Expression von Genen ohne Standardkurven möglich ist. Es wird die Amplifikationseffizienz jeder Probe und deren Durchschnitt mit einem Fehlerkoeffizienten berechnet. Eine 100 %-ige Reaktionseffizienz würde in einem Amplifikationswert von 2 für jede Probe resultieren, was eine Verdopplung eines Amplikons in jedem Zyklus bedeutete. Die durchschnittliche Amplifikationseffizienz wird verwendet, um anhand des take off-Punktes jeder Probe die relative Konzentration der Proben im Vergleich zur Kontrolle zu bestimmen. Der take off gibt im Zyklus den Eintrittszeitpunkt der Proben in die exponentielle Phase an und für seine Berechnung wird die 2. Ableitung der Rohdaten herangezogen. Zu dem Zeitpunkt, an dem die Amplifikationsreaktion mit dem höchsten Anstieg abläuft, ergibt sich ein peak, der sich bei der exponentiellen Reaktion kurz hinter dem take off-Punkt befindet (Abb. 2.6).

Abb. 2.6: Dieses Diagramm zeigt die 2. Ableitung der Quantifizierungsreaktion gegen die Zyklenanzahl aufgetragen. Der take off liegt bei 16,3 Zyklen.

2.12 Statistik

Für die statistische Auswertung der Daten der quantitativen Expressionsanalysen wurde der zweiseitige Zweistichproben-t-Test unter der Annahme ungleicher Varianzen verwendet. Das Signifikanzniveau α wurde auf 0,05 festgelegt.
3 Ergebnisse

3.1 Evaluierung der Methode

In der Anfangsphase wurde die Methode der subtraktiven cDNA-Selektion auf der Grundlage des Clontech PCR-Select cDNA Subtraction Kit erfolgreich etabliert. Es konnte reproduzierbar die Detektion der zu subtrahierenden φX174/HaeIII-Kontroll-DNA aus dem Kit und eine 40-50 %-ige Ligationseffizienz für die an die cDNA-Fragmente zu ligierende Adapterprimer erreicht werden. Beide Kriterien waren Voraussetzungen für die Verwendbarkeit des genannten Kits (siehe Abb. 3.4).

Die Expressionsmuster von 8 ausgewählten cDNA-Klonen wurden in Northern-Analysen mit mRNA von Mausembryonen der Stadien 9, 10, 11 und 12 Tage p.c. überprüft (Abb. 3.2). Vier dieser Gene werden in der Entwicklung der Maus vom Tag 10 p.c. zum Tag 11 p.c. in der Expression deutlich hochreguliert (Klone 1, 46, 49) bzw. initiieren (Klon 10). Die restlichen 4 überprüften Gene werden in diesem Entwicklungszeitraum reprimiert (Klone 41, 50, 53) oder auf konstantem Niveau exprimiert (Klon 33).

Abb. 3.2: Die Northern-Blots der cDNA-Subtraktion vom Tag 10 p.c. zum Tag 11 p.c. weisen bezüglich der Expression auf eine Induktion für die cDNA-Klone 1, 46, 49, eine Initiation für Klon 10, eine Repression für die Klone 41, 50, 53 sowie ein konstantes Niveau für cDNA-Klon 33 hin.
Im Ergebnis dieser Stichprobe entsprachen 50 % der durch die subtraktive cDNA-Selektion identifizierten Gene dem erwarteten Expressionsmuster. Daher besitzt die verwendete Methode der subtraktiven cDNA-Selektion eine genügend hohe Sensitivität, um differenziell exprimierte Gene in Geweben unterschiedlicher Entwicklungsstadien zu identifizieren. Nach der Evaluierung der Methode sollten differenziell exprimierte Gene im Herzen der SHR identifiziert werden, deren Induktion oder Repression zur Initiation bzw. stufenweisen Progression der Hypertrophie des Herzens beitragen.

3.2 Nachweis des hypertrophen Zustands der SHR

3.2.1 Ermittlung von Blutdruck und Herz-/Körpergewicht-Quotienten der Ratten

Um nachzuweisen, dass die SHR eine Herzhypertrophie entwickelt, wurden Blutdruck sowie Herz- und Gesamtgewicht bestimmt, aus denen der Herz-Körpergewicht-Quotient (HW/BW) ermittelt wurde. Die Messung des Blutdrucks (Tab. 3.1) der 12 Wochen alten Tiere (je 3 Stück) bestätigte den normotensiven Status der WKY-Ratten (114 mmHg) und den hypertensiven Status der SHR (200 mmHg). Die Erhöhung des HW/BW um ca. 8 % bei der SHR-12 gegenüber der WKY-12 deutet eine bereits beginnende Hypertrophie des Herzens an (Tab. 3.1). Diese lag dann im Alter von 26 Wochen vollständig ausgebildet vor, wie aus der Zunahme des HW/BW um 57 % bei der SHR-26 im Vergleich zur WKY-26 ersichtlich wird.

<table>
<thead>
<tr>
<th>Ratten</th>
<th>SBP [mm Hg]</th>
<th>BW [g]</th>
<th>HW [g]</th>
<th>HW/BW [× 10⁻³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHR-04</td>
<td>n. b.</td>
<td>68</td>
<td>0,42</td>
<td>6,18</td>
</tr>
<tr>
<td>WKY-04</td>
<td>n. b.</td>
<td>68</td>
<td>0,43</td>
<td>6,32</td>
</tr>
<tr>
<td>SHR-12</td>
<td>200 ± 10</td>
<td>238 ± 2</td>
<td>0,9 ± 0,1</td>
<td>4,0 ± 0,28</td>
</tr>
<tr>
<td>WKY-12</td>
<td>114 ± 10</td>
<td>319 ± 12</td>
<td>1,2 ± 0,1</td>
<td>3,7 ± 0,34</td>
</tr>
<tr>
<td>SHR-26</td>
<td>203 ± 22</td>
<td>315 ± 1</td>
<td>1,4 ± 0,1</td>
<td>4,4 ± 0,28</td>
</tr>
<tr>
<td>WKY-26</td>
<td>124 ± 10</td>
<td>375 ± 12</td>
<td>1,1 ± 0,1</td>
<td>2,8 ± 0,14</td>
</tr>
</tbody>
</table>
3.2.2 Phänotypische Beobachtungen bei den Rattenherz-Präparationen

Bei der Präparation der Herzen der SHR ließen sich einige phänotypische Beobachtungen machen, wie sie bei den WKY-Ratten nicht vorkamen. So waren die Lungen der 12 Wochen alten SHR im hypertensiven Stadium relativ hell und zeigten rote Flecken. Eine etablierte Herzhypertrophie lag bei den 26 Wochen alten SHR vor. Im Gegensatz zu den WKY-Ratten kollabierten ihre Herzen nach der Durchtrennung der Aorta nicht, ihre Konsistenz war fest und die Ventrikelwände dick.

3.3 Isolierung von poly(A⁺)-RNA

Wie bereits erwähnt, wurden die besten Ergebnisse durch die direkte Isolierung der poly(A⁺)-RNA aus frischem Gewebe erzielt. Die Qualität und Integrität der isolierten mRNA wurde durch Formaldehyd-Agarosegel-Elektrophorese überprüft. Die mRNA erschien als Schmier in einem Größenbereich von ca. 8,0 kb bis ca. 0,5 kb, der sich besonders um 2,0 kb anhäufte (Abb. 3.3). Es waren auch ribosomale RNA-Banden zu sehen, was aber nicht mit einer schlechten Ausbeute gleichzusetzen ist. Die in Abb. 3.3 sichtbaren 18S und 28S rRNAs zeigten keinen Einfluss auf die Funktionalität der mRNA und konnten für alle Applikationen eingesetzt werden.

Abb. 3.3: RNA-Gel zur Überprüfung der Integrität der poly(A⁺)-RNA und zur Verwendung für Northern-Hybridisierungen. Ein mRNA-Schmier erstreckt sich von ca. 8,0-0,5 kb. Die Banden bei ca. 4,2 kb bzw. 1,9 kb entsprechen den ribosomalen Banden der 28S- bzw. 18S rRNA.
3.4 cDNA-Subtraktion

Um putative Kandidatengene identifizieren zu können, deren Induktion oder Repression für die Entwicklung der kardiale Hypertrophie verantwortlich gemacht werden können, wurde eine differentielle Genexpressionsanalyse durchgeführt. Mittels der eingangs beschriebenen subtraktiven Suppressions-Hybridisierung wurde nach differenziell exprimierten Genen im Krankheitsverlauf der Hypertrophie in Herzen der SHR gesucht. cDNA-Subtraktionen wurden von SHR-04 nach SHR-12 und von SHR-12 nach SHR-26 durchgeführt (Abb. 2.1). Durch drei zusätzliche cDNA-Subtraktionen zu den jeweils gleichaltrigen WKY, sollte gegen die regelrechte Genexpression der Entwicklung der Tiere abgeglichen werden.

3.4.1 cDNA-Synthese, Rsa I-Spaltung und Adapterligation

 Aus jeweils 2 µg poly(A\(^+\))-RNA aus den Rattenherzen wurden ds cDNAs als Tester und Driver synthetisiert. Die cDNAs wurden mit dem Restriktionsenzym Rsa I in kürzere Fragmente gespalten. Um die Effizienz von cDNA-Synthese und -Spaltung einschätzen zu können, wurden die synthetisierten cDNAs gelektrophoretisch überprüft. Dies ergab für die ungeschnittenen cDNAs vor der Restriktionsspaltung einen Schmier von etwa 0,5 kb bis 10 kb (keine Degradierung der RNA) und für die gespaltenen cDNAs dagegen nur noch einen Schmier von 0,1 kb bis 2,0 kb (Ergebnisse nicht gezeigt). An die glatten Enden der gespaltenen Tester-cDNA wurden im darauf folgenden Schritt die Adapter ligiert. Dazu wurde jede Tester-cDNA zweigeteilt und jeweils mit Adapter 1 bzw. Adapter 2R kombiniert. Für eine spätere nicht-subtrahierte Kontrolle bei der PCR-Amplifikation erfolgte an einen kleinen Teil jeder Tester-cDNA die Ligation mit beiden Adaptoren. Über ein PCR-Experiment wurde die Ligationsstabilität ermittelt, um sicherzustellen, dass am Ende mindestens 25 % aller cDNAs Adapter an beiden Enden haben. Das Experiment ist so konzipiert, dass mittels gen- und adapter-spezifischer Primer Fragmente amplifiziert werden, die den Bereich zwischen cDNA (GAPDH 3'-Primer) und Adapter (PCR Primer 1) überspannen. Das PCR-Produkt hat eine Größe von ca. 1,2 kb (Abb. 3.4). Als Vergleichswert diente die Amplifikation mit zwei genspezifischen GAPDH-Primern, die eine Produktgröße von ca. 0,5 kb ergab. Wie in Abb. 3.4 zu sehen ist, beträgt die Intensität der Banden der PCR-Produkte unter Verwendung von einem genspezifischen Primer (GAPDH 3'-Primer) und PCR Primer 1 knapp die Hälfte der Bandenintensität der PCR-Produkte, die aus zwei genspezifischen Primern (GAPDH 3'/ GAPDH 5') resultieren. Mit einer geschätzten Ligationsstabilität von 40 % - 50 % kann von einer guten Effizienz bei der nachfolgenden cDNA-Subtraktion ausgegangen werden.
3.4.2 PCR-Amplifikation der subtraktiv hybridisierten cDNA

Bei diesem Schritt wurden die differenziell exprimierten cDNAs nach der subtrakiven Hybridisierung selektiv amplifiziert. Zuvor wurden noch die fehlenden Stränge der Adapterendenden aufgefüllt, so dass die Bindungsstellen für PCR Primer 1 jetzt vorlagen (siehe Adapter- und Primer-Sequenzen auf Seite 11). Während der ersten Amplifikation kam es zur exponentiellen Vermehrung lediglich der ds cDNAs mit unterschiedlichen Adaptersequenzen an beiden Enden. Die zweite, nested PCR, diente dann der weiteren Anreicherung differenziell exprimierter cDNAs und der Verminderung des Hintergrundes. Abb. 3.5 zeigt exemplarisch das zu erwartende Ergebnis der zweiten Amplifikation der zwei cDNA-Subtraktionen von SHR-12 und SHR-26 sowie zwischen WKY-26 und SHR-26. Die deutliche Ausprägung der Hae III-gespaltenen φX174-Banden (Spur K) als mitgeführte „PCR-Kontrolle: subtrahierte cDNA” bedeutet, dass die PCR erfolgreich durchgeführt wurde. Der erkennbare Unterschied zwischen den subtrahierten Proben (Spuren 1, 3, 5, 7) und nicht-subtrahierten Proben (Spuren 2, 4, 6, 8) bestätigt das Gelingen der Subtraktionsexperimente. Die mehr oder weniger stark ausgeprägten distinkten Banden im Bereich von ca. 0,2 kb bis 1,3 kb stellen die bei der Subtraktion angereicherten cDNA-Fragmente dar und repräsentieren die potentiell differenziell exprimierten Sequenzen. Die unsubtrahierten Proben, deren Tester-cDNAs bereits vor der Hybridisierung beide Adaptersequenzen trugen, sind im Agarosegel an einem unspezifischen Schmier zu erkennen.
3.4.3 Klonierung der subtrahierten cDNA-Bibliotheken

Nach der cDNA-Subtraktion wurde das PCR-Produkt der zweiten Amplifikation der subtrahierten Proben in ein T/A-basiertes Klonierungssystem kloniert. Es wurden 96 zufällig gepickte weiße Kolonien in Kultur angezüchtet. Der Einbau der cDNA-Inserts der einzelnen Klone wurde durch PCR direkt aus den Kulturen überprüft (Abb. 3.6).

Jedes PCR-Produkt entspricht dem cDNA-Insert. Mit einer Transformationsrate von über 70 % konnte auf eine gute Klonierungseffizienz geschlossen werden. Die Abb. 3.6 zeigt einen Teil der gepickten Kolonien der Subtraktion SHR-12 nach SHR-26. Von den hier abgebildeten 68 cDNA-Klonen besitzen 53 Klone ein cDNA-Insert mit einer Fragmentlänge von ca. 0,2 kb bis 1,2 kb. Diese cDNA-Fragmente repräsentieren die subtrahierten cDNA-Bibliotheken. Im Verlauf der Untersuchungen wurden insgesamt fünf cDNA-Subtraktionen durchgeführt, zuzüglich der rückwärts-subtrahierten Kontrollexperimente für das darauf folgende differentielle Screening. Dabei entstanden unterschiedlich große subtrahierte cDNA-Bibliotheken, über deren Zusammensetzung Tab. 3.2 einen Überblick gibt. Es konnten für die hypertrophe Entwicklung von SHR-04 über SHR-12 nach SHR-26 insgesamt 145 mögliche Kandidaten ermittelt werden.

Tab. 3.2: Übersicht über die Anzahl der Klone der einzelnen cDNA-Bibliotheken, die aus der cDNA-Subtraktion resultierten und für weitere Analysen zur Verfügung standen.

<table>
<thead>
<tr>
<th>cDNA-Subtraktion</th>
<th>Anzahl gepickter cDNA-Klone</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHR-04 ⇐⇒ SHR-12</td>
<td>72</td>
</tr>
<tr>
<td>SHR-12 ⇐⇒ SHR-26</td>
<td>73</td>
</tr>
<tr>
<td>∑: 145</td>
<td></td>
</tr>
<tr>
<td>WKY-04 ⇐⇒ SHR-04</td>
<td>81</td>
</tr>
<tr>
<td>WKY-12 ⇐⇒ SHR-12</td>
<td>36</td>
</tr>
<tr>
<td>WKY-26 ⇐⇒ SHR-26</td>
<td>83</td>
</tr>
</tbody>
</table>

3.5 Differentielles Screening

Mit der Methode der cDNA-Subtraktion konnten differentiell exprimierte cDNAs identifiziert und diese sehr stark angereichert werden. Trotzdem ist das Vorhandensein von identischen Sequenzen in den Tester- und Driver-Proben nicht auszuschließen. Neben der Qualität der mRNA-Isolation und der Durchführung der Subtraktion, betrifft das hauptsächlich differentiell exprimierte mRNAs, die nur in sehr geringer Anzahl in den Proben vorliegen. Um diesen falsch-positiven background zu eliminieren und dadurch die Effizienz der Northern-Analysen zu erhöhen, wurden die cDNA-Bibliotheken differentiell gescreent (siehe Abschnitt 2.7). Eine Zusammenfassung darüber gibt die Tab. 3.3. Von den 145 Kandidaten für die Ausbildung einer Herzhypertrophie von SHR-04 nach SHR-26 vor dem Screening konnten danach nur noch 56 bestätigt werden.
Für jede cDNA-Subtraktion wurden alle potentiell differenziell exprimierten Klone (die vorwärts-subtrahierte cDNA-Bibliothek, siehe Tab. 3.2) per Hand als Dubletten auf vier identische Nylonmembranen gespottet. Diese vier identischen cDNA-Dot Blots wurden mit \(^{32}\)P-markierten Sonden hybridisiert, die aus der vorwärts-subtrahierten cDNA, der rückwärts-subtrahierten cDNA, dem nicht-subtrahierten Tester und dem nicht-subtrahierten Driver hergestellt worden waren. Die Unterschiede in den Hybridisierungssignalen zwischen den Dot Blots wurden abgeschätzt. Mögliche Interpretationen bei der Auswertung der Hybridisierungssignale sind in der Tab. 2.2 zusammengestellt.

3.5.1 Subtraktion SHR-04 → SHR-12

Die Abb. 3.7 zeigt die Dot Blots für die cDNA-Subtraktion von SHR-04 nach SHR-12. Bei diesem differenziellen Screening wurde zusätzlich ein fünfter, identischer Dot Blot verwendet, der mit der vorwärts-subtrahierten cDNA der Kontroll-Subtraktion WKY-12 nach SHR-12 hybridisiert wurde. Dieser Ansatz sollte Aussagen über mögliche Redundanzen der differenziellen Klone der beiden Subtraktionen ermöglichen. Potentiell differenziell exprimierte Klone wären im Vergleich der Dot Blots von vorwärts-subtrahiertem Tester (SHR-12) und rückwärts-subtrahiertem Driver (SHR-04) schlechte Kandidaten, wenn im Dot Blot vom vorwärts-subtrahiertem Tester (SHR-12) der Kontroll-Subtraktion Hybridisierungssignale zu sehen sind. Die Abb. 3.7 verdeutlicht, dass es sich bei den meisten Klonen nicht bzw. nicht eindeutig um differenziell exprimierte cDNAs handelt. Die potentiellen Kandidaten sind durch Pfeile an den Positionen C1 (Klon 26), C5 (Klon 32), C6 (Klon 33), E5 (Klon 62), F4 (Klon 75), F8 (Klon 80), G3 (Klon 85) und G8 (Klon 91) gekennzeichnet. Diese Klone wurden im Ergebnis des differenziellen Screenings mit den herkömmlichen vier Dot Blots gefunden und zeigen kein Hybridisierungssignal im fünften Dot Blot mit der Sonde der Kontroll-Subtraktion.
3.5.2 Subtraktion SHR-12 → SHR-26

In folgender Abb. 3.8 sind die Dot Blots der cDNA-Subtraktion SHR-12 nach SHR-26 dargestellt. Die ausgewählten potentiellen Kandidaten für differenzielle Genexpression wurden wieder durch Pfeile hervorgehoben: B6 (Klon 23), B10 (Klon 28), C4 (Klon 33), C10 (Klon 39), D5 (Klon 46), F1 (Klon 66), F5 (Klon 72), G5 (Klon 86), G8 (Klon 90) und G10 (Klon 92).

3.6 Northern Blot-Analysen

<table>
<thead>
<tr>
<th>cDNA-Subtraktion</th>
<th>Anzahl durchgeführter Northern-Hybridisierungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHR-04 ⇐⇒ SHR-12</td>
<td>8</td>
</tr>
<tr>
<td>SHR-12 ⇐⇒ SHR-26</td>
<td>34</td>
</tr>
</tbody>
</table>

Auf den Northern Blots wurden zwar die jeweiligen RNA von SHR und WKY aufgetragen, aber für eine Aussage zur differentiellen Genexpression wurde nur der direkte Vergleich zwischen den subtrahierten Stadien (z. B. SHR-04 → SHR-12) zugrunde gelegt. Ansonsten wäre eine Auswertung aufgrund widersprüchlicher Ergebnisse oft nicht möglich gewesen und das Resultat wäre auf die Aussage „es liegt eine Regulation vor“ reduziert worden.

3.6.1 Subtraktion SHR-04 → SHR-12

Von den acht untersuchten Klonen ergaben nur die vier in der Tab. 3.5 aufgeführten Klone verwertbare Hybridisierungssignale. Es ist zu sehen, dass Klone mit mehreren Transkripten unterschiedlicher Größe vertreten sind. In Abb. 3.9 sind Ausschnitte der Northern Blots gezeigt. In der Entwicklung von SHR-04 nach SHR-12 lassen sich bei den Klonen 16 und 75 eine Repression und bei den Klonen 32 und 33 eine Induktion erkennen.
Der Klon 16 ergab im Northern Blot zwei Banden mit einer Größe von ca. 0,5 kb und 1,9 kb. Das erste Transkript bei 0,5 kb lässt keinen Unterschied innerhalb der SHR, aber eine deutliche Abnahme bei den Kontrolltieren von WKY-04 nach WKY-12 erkennen. Das zweite Transkript bei 1,9 kb deutet auf eine leichte Abnahme von SHR-04 nach SHR-12 hin. Dies wird durch eine Zunahme der Signalintensität bei den WKY-12-Kontrolltieren im Vergleich zu den WKY-04 bekräftigt. Bei den hypertensiven SHR-12 liegt also eine deutlich schwächere Expression als bei den normotensiven WKY-12 vor. Beim Klon 75 sind zwei Transskripte bei ca. 1,9 kb und 3,5 kb zu sehen, deren Signale von SHR-04 nach SHR-12 reduziert sind. Das größere Transkript scheint hierbei SHR-spezifisch zu sein. Die Klone 32 und 33 zeigen im Northern Blot Banden bei ca. 3,5 kb, wobei sich die stärkste Signalintensität bei SHR-12 findet. Der Klon 32 weist auch eine leichte Zunahme der Bandenstärke bei WKY-12 im Vergleich zu WKY-04 auf.
Tab. 3.5: Überblick über cDNAs, die in Northern-Analysen unterschiedliche Hybridisierungssignale bei der cDNA-Subtraktion von SHR-04 nach SHR-12 lieferten.

<table>
<thead>
<tr>
<th>cDNA-Klon</th>
<th>Northern-Signale</th>
<th>Fragmentgröße</th>
<th>Transkriptgröße</th>
<th>Induziert / Reprimiert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bezeichnung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>0,6 kb</td>
<td>1,9 kb</td>
<td>–</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>0,7 kb</td>
<td>3,5 kb</td>
<td>+</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>0,7 kb</td>
<td>3,5 kb</td>
<td>+</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td>0,4 kb</td>
<td>1,9 kb</td>
<td>=</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3,5 kb</td>
<td>–</td>
</tr>
</tbody>
</table>

„+“, induziert; „–“, reprimiert; „=“, kein Unterschied

3.6.2 Subtraktion SHR-12 → SHR-26

Es wurden 34 cDNA-Klone untersucht. Von diesen konnten für die 17 Kandidaten aus Tab. 3.6 von einer differentiellen Genexpression ausgegangen werden, wobei 16 als hoch- und einer als herunterreguliert eingestuft wurden. Weitere Details dieser Northern-Hybridisierungen lassen sich aus der Tab. 3.6 und der Abb. 3.10 entnehmen.

Tab. 3.6: Ergebnisse der Northern-Hybridisierungen von cDNA-Klonen, die als potentielle Kandidaten im weiteren Verlauf ansequenziert wurden.

<table>
<thead>
<tr>
<th>cDNA-Klon</th>
<th>Northern-Signale</th>
<th>Fragmentgröße</th>
<th>Transkriptgröße</th>
<th>Induziert / Reprimiert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bezeichnung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0,4 kb</td>
<td>3,8 kb</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0,8 kb</td>
<td>0,4 kb; 1,0 kb</td>
<td>–</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>0,3 kb; 0,4 kb</td>
<td>1,0 kb</td>
<td>++</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>0,4 kb</td>
<td>2,7 kb; 10 kb</td>
<td>++</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>0,6 kb; 1,2 kb</td>
<td>3,5 kb</td>
<td>+</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>0,7 kb</td>
<td>5,8 kb</td>
<td>+</td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>1,0 kb</td>
<td>4,0 kb</td>
<td>+</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>0,8 kb</td>
<td>1,0 kb</td>
<td>++</td>
</tr>
<tr>
<td>46</td>
<td></td>
<td>0,9 kb</td>
<td>1,5 kb</td>
<td>+</td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>0,7 kb</td>
<td>0,9 kb; 4,7 kb</td>
<td>++</td>
</tr>
<tr>
<td>65</td>
<td></td>
<td>0,9 kb</td>
<td>1,8 kb</td>
<td>+</td>
</tr>
<tr>
<td>66</td>
<td></td>
<td>0,7 kb</td>
<td>2,5 kb; 4,7 kb</td>
<td>++</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>0,8 kb</td>
<td>1,0 kb; 2,7 kb</td>
<td>++</td>
</tr>
<tr>
<td>77</td>
<td></td>
<td>0,6 kb</td>
<td>3,0 kb</td>
<td>++</td>
</tr>
<tr>
<td>86</td>
<td></td>
<td>0,95 kb</td>
<td>2,5 kb</td>
<td>++</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td>0,9 kb</td>
<td>1,9 kb</td>
<td>+</td>
</tr>
<tr>
<td>92</td>
<td></td>
<td>0,45 kb</td>
<td>1,9 kb; 2,7 kb; 4,5 kb</td>
<td>++</td>
</tr>
</tbody>
</table>

„+“, induziert; „++“, stark induziert; „–“, reprimiert
Abb. 3.10: Northern-Hybridisierungen ausgewählter Klone für das Stadium SHR-26, die später für die real-time Quantifizierung verwendet wurden.

Im Northern Blot ergaben die Klone 12, 28, 33, 65, 77 und 92 die in der Abb. 3.10 dargestellten Hybridisierungssignale. Die Blots zeigen eine gemeinsame Eigenschaft der Bandenmuster dieser Hybridisierungen. Alle sechs Northern Blots lassen eine Zunahme der Signalintensität bei WKY-26 und SHR-26 erkennen, wobei aber die Induktion bei SHR-26 stärker ausgeprägt zu sein scheint.
3.6.3 Kontrollhybridisierungen

![Abb. 3.11: Kontrollhybridisierung der Northern Blots mit β-Actin. Exemplarisch ist sie für den Klon 28 der cDNA-Subtraktion von SHR-12 nach SHR-26 gezeigt.](image)

3.7 Sequenzanalysen

Die cDNA-Klone mit einer Länge von 200 bp - 1200 bp, bei denen es sich um putative Kandidaten für eine differentielle Genexpression handelte, wurden von beiden Seiten ansequenziert und die Sequenzen zwischen den einzelnen Klonen abgeglichen, um Übereinstimmungen untereinander aufzudecken (interne Alignments). Im Anschluss daran wurden umfangreiche in silico-Analysen durchgeführt, um Homologien zu Ratte, Maus und Menschen zu ermitteln, wobei die Sequenzen mittels BLAST gegen elektronische Datenbanken abgeglichen wurden. Die gefundenen Homologien wurden in Tab. 3.7 und Tab. 3.8 aufgelistet. Größtenteils ließ sich auf diesem Wege auch die chromosomale Lokalisation ermitteln. Weiterhin wurden zur Identifizierung zusätzlicher humaner Homologien verschiedene EST-Datenbanken durchsucht, wodurch eine Reihe humaner cDNA-Klone gefunden wurden, die in weitergehenden Untersuchungen die Grundlage für die Isolierung der homologen Gene des Menschen bilden sollten.
3.7.1 Subtraktion SHR-04 → SHR-12

Differenziell exprimierter cDNA-Klon in der Hypertrophieentwicklung des Herzens von SHR-04 nach SHR-12 Wochen sind in Tab. 3.7 aufgeführt. Bei den Klonen 32 und 33 stellte es sich durch den internen Sequenzvergleich heraus, dass es sich bei ihnen um dieselbe cDNA handelt. Da anfänglich noch keine Homologien zu Genen bekannt waren, wurden für diese cDNA-Klone keine quantitativen Untersuchungen durchgeführt. Mittlerweile liegen für die unbekannten Klone Sequenzhomologien zu bekannten Genen vor, die in der Tabelle eingetragen worden sind.

Tab. 3.7: Sequenzhomologien für Klone in der Entwicklung von SHR-04 nach SHR-12. HSA, Homo sapiens; MMU, Mus musculus; RNO, Rattus norvegicus; Bez., Bezeichnung; Trans., Transkriptgröße; Ident., Identitäten [bp]; (%), Homologie; Chr., chromosomale Lokalisation

<table>
<thead>
<tr>
<th>cDNA-Klon</th>
<th>zu bekannten Genen</th>
<th>Ident.</th>
<th>Chr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>0,5 kb</td>
<td>RNO ATPase synthase subunit 6 mRNA</td>
<td>440 / 477</td>
</tr>
<tr>
<td></td>
<td>1,9 kb</td>
<td>1872 bp; AC: AF504920; partial cds</td>
<td>(92 %)</td>
</tr>
<tr>
<td>32-33</td>
<td>3,5 kb</td>
<td>RNO gap junction membrane channel protein alpha 1 (Gja1)</td>
<td>88 / 90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3148 bp; AC: NM_012567; mRNA</td>
<td>(97 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MMU gap junction membrane channel protein alpha 1 (Gja1)</td>
<td>80 / 95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3071 bp; AC: NM_010288.2; mRNA</td>
<td>(84 %)</td>
</tr>
<tr>
<td>75</td>
<td>1,9 kb</td>
<td>RNO nucleolar protein 3 (apoptosis repressor with CARD domain) (Nol3)</td>
<td>351 / 355</td>
</tr>
<tr>
<td></td>
<td>3,5 kb</td>
<td>1876 bp; AC: NM_053516.1; mRNA</td>
<td>(98 %)</td>
</tr>
</tbody>
</table>

3.7.2 Subtraktion SHR-12 → SHR-26

Zwei der gepickten Klone (Abschnitt 3.4, Abb. 3.6), deren Sequenzen ermittelt werden sollten, wiesen im Agarosegel Doppelbanden auf, die zuerst einzeln aus dem Gel isoliert werden mussten. Beim internen Sequenzvergleich stellte sich heraus, dass die Bande bei 0,3 kb des Klons 12 (12-1) mit dem Insert des Klons 15 identisch und der identische Klon wurde fortan unter der neuen gemeinsamen Bezeichnung Klon 15 geführt. Die Bande bei 0,4 kb des Klons 12 (12-2) blieb von der Bezeichnung her Klon 12. Die den beiden Banden entsprechenden cDNA des Klons 28 wurden in Klon 28-1 (0,6 kb) und Klon 28-2 (1,2 kb) umbenannt. Weiterhin war den Sequenzinformationen zu entnehmen, dass die Klone 39 und 69 ebenfalls die gleiche cDNA repräsentieren und
nun die Bezeichnung Klon 39-69 erhielten. In der Tab. 3.8 sind die Informationen über Sequenzhomologien zu bekannten Genen aufgeführt, die durch den Abgleich der Klonsequenzen der Subtraktion von SHR-12 nach SHR-26 mit elektronischen Datenbanken ermittelt werden konnten.

Tab. 3.8: Sequenzhomologien für Klone der Entwicklung von SHR-12 nach SHR-26. HSA, Homo sapiens; MMU, Mus musculus; RNO, Rattus norvegicus; Bez., Bezeichnung; Trans., Transkriptgröße; Ident., Identitäten [bp]; (%) Homologie; Chr., chromosomale Lokalisation

<table>
<thead>
<tr>
<th>cDNA-Klon</th>
<th>Sequenzhomologien</th>
<th>Ident.</th>
<th>Chr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bez.</td>
<td>Trans.</td>
<td>zu bekannten Genen oder anderen Sequenzen</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3,8 kb</td>
<td>RNO similar to muscleblind-like 2 (Mbnl2_predicted) isoform 1</td>
<td>355/356</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4416 bp; AC: XM_214253; mRNA</td>
<td>(99 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MMU muscleblind-like 2 (Mbnl2)</td>
<td>335 / 358</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2443 bp; AC: NM_175341.2; mRNA</td>
<td>(93 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HSA muscleblind-like 2 (Drosophila) (MBNL2), variant 1</td>
<td>317 / 359</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4665 bp; AC: NM_144778.1; mRNA</td>
<td>(88 %)</td>
</tr>
<tr>
<td>5</td>
<td>0,4 kb</td>
<td>RNO similar to RIKEN cDNA 5230400G24 (LOC301563)</td>
<td>707 / 714</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1835 bp; AC: XM_217448.2; mRNA</td>
<td>(99 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MMU RIKEN cDNA 5230400G24 gene, mRNA</td>
<td>506 / 528</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1920 bp; AC: BC059229.1; complete cds</td>
<td>(95 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HSA GL004 protein (GL004)</td>
<td>529 / 592</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2032 bp; AC: NM_020194.4; mRNA</td>
<td>(89 %)</td>
</tr>
<tr>
<td>12</td>
<td>1 kb</td>
<td>RNO gamma sarcoglycan (Sgcg)</td>
<td>278 / 280</td>
</tr>
<tr>
<td>(12-2)</td>
<td></td>
<td>1523 bp; AC: NM_001006993; mRNA</td>
<td>(99 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MMU sarcoglycan, gamma (Sgcg)</td>
<td>256 / 280</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1289 bp; AC: NM_011892.1; mRNA</td>
<td>(91 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mesocricetus auratus mRNA for gamma-sarcoglycan</td>
<td>246 / 280</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1550 bp; AC: D83653.1; complete cds</td>
<td>(87 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HSA sarcoglycan, gamma (SGCG)</td>
<td>234 / 283</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1630 bp; AC: NM_000231.1; mRNA</td>
<td>(82 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>15</td>
<td>2,7 kb</td>
<td>RNO suppressor of cytokine signaling 6 (predicted)</td>
<td>383 / 383</td>
</tr>
<tr>
<td></td>
<td>10 kb</td>
<td>(Socs6_predicted), mRNA</td>
<td>(100 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2362 bp; AC: XM_225667; mRNA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MMU suppressor of cytokine signaling 6 (Socs6)</td>
<td>368 / 383</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3213 bp; AC: NM_018821.2; mRNA</td>
<td>(96 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HSA suppressor of cytokine signaling 6 (SOCS6)</td>
<td>356 / 383</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2650 bp; AC: NM_004232; mRNA</td>
<td>(92 %)</td>
</tr>
<tr>
<td>28-1</td>
<td>3,5 kb</td>
<td>MMU mRNA for monoglyceride lipase (Mgll gene)</td>
<td>215 / 245</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3863 bp; AC: NM_011844; mRNA</td>
<td>(87 %)</td>
</tr>
<tr>
<td>28-2</td>
<td>3,5 kb</td>
<td>HSA titin (TTN), transcript variant novex-2</td>
<td>158 / 194</td>
</tr>
<tr>
<td></td>
<td></td>
<td>82603 bp; AC: NM_133437.1; mRNA</td>
<td>(81 %)</td>
</tr>
<tr>
<td>33</td>
<td>5,8 kb</td>
<td>MMU predicted: calmodulin binding transcription activator 1 (Camta1), mRNA</td>
<td>389 / 422</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8341 bp; AC: XM_355539.3; mRNA</td>
<td>(92 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HSA calmodulin binding transcription activator 1 (CAMTA1)</td>
<td>360 / 427</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8457 bp; AC: NM_015215.1; mRNA</td>
<td>(84 %)</td>
</tr>
<tr>
<td>36</td>
<td>4,0 kb</td>
<td>RNO Bal-643 mRNA</td>
<td>233 / 233</td>
</tr>
<tr>
<td></td>
<td></td>
<td>736 bp; AC: AY325226.1; complete cds</td>
<td>(100 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MMU cDNA sequence BC005537 (BC005537)</td>
<td>231 / 233</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2551 bp; AC: NM_024473.2; mRNA</td>
<td>(99 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HSA chromosome 6 open reading frame 62 (C6orf62)</td>
<td>229 / 242</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2444 bp; AC: NM_030939.3; mRNA</td>
<td>(94 %)</td>
</tr>
<tr>
<td>39-69</td>
<td>1 kb</td>
<td>RNO ribosomal protein L3 (Rpl3)</td>
<td>740 / 743</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1320 bp; AC: NM_198753.1; mRNA</td>
<td>(99 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MMU ribosomal protein L3 (Rpl3)</td>
<td>689 / 732</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1276 bp; AC: NM_013762.1; mRNA</td>
<td>(94 %)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HSA ribosomal protein L3 (RPL3)</td>
<td>647 / 718</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1311 bp; AC: NM_000967.2; mRNA</td>
<td>(90 %)</td>
</tr>
<tr>
<td>46</td>
<td>1.5 kb</td>
<td>RNO heterogeneous nuclear ribonucleo-proteins (hnRNP) methyl-transferase-like 2 (S. cerevisiae) (Hrmt1l2) 1201 bp; AC: NM_024363.1; mRNA</td>
<td>475 / 483 (98 %)</td>
</tr>
<tr>
<td>58</td>
<td>0.9 kb</td>
<td>RNO acetyl-Coenzyme A dehydrogenase, long-chain (Acadl) 1451 bp; AC: NM_012819.1 ; mRNA</td>
<td>188 / 196 (96 %)</td>
</tr>
<tr>
<td>65</td>
<td>1.8 kb</td>
<td>RNO solute carrier family 35, member F5 (predicted) (Sle35f5_predicted), mRNA 2688 bp; AC: XM_222576 ; mRNA</td>
<td>759/769 (98 %)</td>
</tr>
<tr>
<td>66</td>
<td>2.5 kb</td>
<td>RNO cadherin 2 (Cdh2) 4350 bp; AC: NM_031333.1; mRNA</td>
<td>535 / 542 (98 %)</td>
</tr>
<tr>
<td>77</td>
<td>3.0 kb</td>
<td>RNO similar to epidermal growth factor receptor substrate 15-like 1 (Eps15-related protein) (Eps15R) 3072 bp; AC: NM_001029921; mRNA</td>
<td>366 / 371 (98 %)</td>
</tr>
</tbody>
</table>

MMU hnRNP methyltransferase-like2 (S.cerevisiae) (Hrmt1l2) 1282 bp; AC: NM_019830.1; mRNA	454 / 484 (93 %)	MMU 7
MMU acetyl-Coenzyme A dehydrogenase, long-chain (Acadl) 1893 bp; AC: NM_007381.2; mRNA	114 / 123 (92 %)	MMU 1
MMU solute carrier family 35, member F5 (Sle35f5) 2709 bp; AC: NM_028787.2; mRNA	743 / 800 (92 %)	MMU 1
MMU cadherin 2 (Cdh2) 4321 bp; AC: NM_007664.1; mRNA	509 / 542 (93 %)	MMU 18
MMU epidermal growth factor receptor pathway substrate 15-like 1) (Eps15R) 3129 bp; AC: NM_007944.1; mRNA	479 / 515 (93 %)	MMU 8

| HSA hnRNP methyltransferase-like 2 (HRMT1L2), variant 3 1262 bp; AC: NM_198318.1| mRNA | 381 / 432 (88 %) | HSA 19 |
| HSA cadherin 2, type 1, N-cadherin (neuronal) (CDH2) 4122 bp; AC: NM_001792.2; mRNA | 458 / 535 (85 %) | HSA 18 |

<p>| HSA solute carrier family 35, member F5 (SLC35F5) 2875 bp; AC: NM_025181.2; mRNA | 690 / 804 (85 %) | HSA 2 |</p>
<table>
<thead>
<tr>
<th>Position</th>
<th>Length</th>
<th>Ensembl Name</th>
<th>Accession</th>
<th>Complete Sequence</th>
<th>Percentage</th>
<th>Ref Genomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>86</td>
<td>2,5 kb</td>
<td>RNO 3 BAC CH230-11N5</td>
<td>891 / 896</td>
<td>RNO 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>238007 bp; AC: AC097745.8; complete sequence</td>
<td>(99 %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>1,9 kb</td>
<td>RNO citrate lyase beta like (predicted) Clybl_predicted</td>
<td>712 / 721</td>
<td>RNO 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2298 bp; AC: XM_240311; mRNA</td>
<td>(98 %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>1,9; 2,7; 4,5 kb</td>
<td>RNO r-goliath protein (Gp)</td>
<td>377 / 380</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1463 bp, AC: AY190520.1; mRNA</td>
<td>(99 %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MMU goliath protein (Gp)</td>
<td>372 / 380</td>
<td>MMU 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1452 bp; AC: AF171875; mRNA</td>
<td>(97 %)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>HSA goliath protein (GP)</td>
<td>354 / 381</td>
<td>HSA 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1862 bp; AC: AY083998.1; mRNA</td>
<td>(92 %)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.8 Bestimmung der relativen Expression durch real-time RT-PCR

3.8.1 Evaluierung der real-time PCR anhand einer GAPDH-Verdünnungsreihe

Um die Methode der Quantifizierung mittels real-time PCR und die Datenanalyse zu etablieren, wurde eine Verdünnungsreihe des GAPDH-Gens getestet. Die einzelnen Verdünnungsstufen sind der Tab. 3.9 zu entnehmen. Der Kurvenverlauf ist in Abb. 3.12 gezeigt. Die Proben mit Transkripten der größten Kopienzahl (Verdünnung 1:1) erreichen die exponentielle Phase der Amplifikation bereits nach ca. 12 Zyklen, die mit der niedrigsten (1:250-Verdünnung) erst nach ca. 22 Zyklen.
Exemplarisch für alle Quantifizierungen sind in der Tab. 3.9 die Ergebnisse der GAPDH-Verdünnungsreihe aufgelistet, die von der Analysesoftware generiert wurden. Anhand der Rohdaten take off und Amplifikationseffizienz wurde zuerst überprüft, ob alle Proben ordnungsgemäß amplifiziert wurden. Die Amplifikationseffizienzen sollten zwischen 1,7 - 2,0 liegen, um die Bedingungen für die Anwendbarkeit des zugrunde liegenden mathematischen Modells zu gewährleisten. Anhand des Vergleichs der einzelnen take off-Werte können Ausreißer erkannt und berücksichtigt werden. Weiterhin erfordert die Software die Auswahl einer Kontrolle. Hierbei wird eine einzelne Probe als Referenzprobe ausgewählt und erhält den Wert 1, auf den die Expressionen aller anderen Proben bezogen werden. Für den Versuch mit GAPDH wurde die Probe Nr. 2 der 1:1-Verdünnung (Tab. 3.9) als Kontrolle gewählt, da dies die vorliegende Konzentrationsabnahme der Verdünnungsstufen am besten widerspiegelte.
Tab. 3.9: Quantifizierungsergebnisse einer GAPDH-Verdünnungsreihe. Probe 2 wurde als interne Referenz auf 1 gesetzt. Aus den take off-Werten und Amplifikationseffizienzen errechnen sich die relativen Konzentrationen. Die Durchschnittsamplifikation beträgt hier 1,83±0,08.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung</th>
<th>take off</th>
<th>Amplifikation</th>
<th>Relative Konzentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1:1</td>
<td>11,9</td>
<td>1,81</td>
<td>1,06E+00</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>2,23</td>
<td>1,00E+00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>1,69</td>
<td>1,00E+00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1:2</td>
<td>13,3</td>
<td>1,98</td>
<td>4,56E-01</td>
</tr>
<tr>
<td>5</td>
<td>13,2</td>
<td>2,19</td>
<td>4,84E-01</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>13,4</td>
<td>1,82</td>
<td>4,29E-01</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1:5</td>
<td>15,1</td>
<td>1,71</td>
<td>1,54E-01</td>
</tr>
<tr>
<td>8</td>
<td>15,2</td>
<td>1,8</td>
<td>1,45E-01</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>15,1</td>
<td>1,86</td>
<td>1,54E-01</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1:10</td>
<td>16,7</td>
<td>1,91</td>
<td>5,84E-02</td>
</tr>
<tr>
<td>11</td>
<td>16,9</td>
<td>1,79</td>
<td>5,18E-02</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>16,5</td>
<td>1,79</td>
<td>6,59E-02</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1:50</td>
<td>19,2</td>
<td>1,94</td>
<td>1,29E-02</td>
</tr>
<tr>
<td>14</td>
<td>19,3</td>
<td>1,72</td>
<td>1,21E-02</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>19,5</td>
<td>1,88</td>
<td>1,08E-02</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>1:100</td>
<td>20,2</td>
<td>1,9</td>
<td>7,05E-03</td>
</tr>
<tr>
<td>17</td>
<td>20,4</td>
<td>1,73</td>
<td>6,24E-03</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>20,1</td>
<td>1,82</td>
<td>7,49E-03</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>1:250</td>
<td>21,9</td>
<td>1,96</td>
<td>2,52E-03</td>
</tr>
<tr>
<td>20</td>
<td>21,9</td>
<td>1,82</td>
<td>2,52E-03</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>21,9</td>
<td>1,84</td>
<td>2,52E-03</td>
<td></td>
</tr>
</tbody>
</table>

Die relativen Expressionen der GAPDH-Verdünnungen sind in Abb. 3.13 gegen die einzelnen Stufen aufgetragen und entsprechen der Abnahme der GAPDH-Transkripte.
3.8.2 Test der mRNA auf Kontamination mit genomischer DNA

Die RNA kann variable Mengen an genomischer DNA enthalten, wobei die spektrophotometrische Konzentrationsmessung der RNA jedoch keine Rückschlüsse über deren Existenz zulässt. Durch DNase-Behandlung der RNA könnte diesem Problem nur teilweise begegnet werden. Deshalb wurde der mögliche Einfluss solcher Kontaminationen überprüft. In den ersten Versuchen (Abb. 3.14, B) wurden jeweils parallel mRNA und cDNA mit Primern für β-Actin und GAPDH amplifiziert und Banden bei 200 bp bzw. 450 bp erzielt. Auch die mRNA-Probe des GAPDH zeigte eine Bande bei 450 bp und lässt auf genomische DNA in der mRNA schließen. Die Coamplifikation von genomischer DNA kann durch geeignete, Intron-überspannende Kontrollgensequenzen verhindert werden, wodurch in den Proben vorhandene genomische DNA keine PCR-Produkte erzeugen wird (Lion, 2001). Es wurden neue Primer getestet (Abb. 3.14, A), die auf verschiedenen Exons liegen und nur den cDNA-Anteil amplifizieren sollten (β-Actin: 0,5 kb; GAPDH: 0,44 kb), jedoch keine genomische DNA (β-Actin: 1kb; GAPDH: 1,1 kb). Bei β-Actin (bACT-1) ist eine schwache Bande für genomische DNA in der RNA-Spur erkennbar, die bei GAPDH-1 fehlt, wofür aber eine Bande in der RNA-Spur auf cDNA hinweist, die sich durch die Existenz von GAPDH-Pseudogenen erklären lässt.

Mit weiteren Experimenten sollte der Einfluss von DNA auf die Quantifizierung untersucht werden. Während bei Verwendung unverdünnter mRNA Amplifikationsprodukte nachgewiesen werden konnten (Abb. 3.14 und nicht gezeigte real-time PCR-Ergebnisse), lässt sich der Einfluss genomischer DNA vernachlässigen, wenn die mRNA in der gleichen Verdünnung vorlag, wie sie für die cDNA bei den real-time PCR-Experimenten verwendet wurde, da keine Amplifikation stattfand.

Abb. 3.14: Test auf genomische DNA in der mRNA. PCR-Produkte, die bei der Amplifikation von mRNA (Spur 1) bzw. cDNA (Spur 2) mit β-Actin- und GAPDH-Primern entstanden sind. Zur Überprüfung auf Pseudogene (B), wurden neue, Exon-überspannende Primer getestet (A). Auch bei den neuen Primern (GAPDH-1, A) ist eine 450 bp-Bande zu sehen. Spur 3: NK
3.8.3 Überprüfung von *housekeeping*-Genen als mögliche interne Kontrollgene

A)

![Graphik β-Actin](image1)

B)

![Graphik GAPDH](image2)

Abb. 3.15: Grafische Darstellung der Ergebnisse der real-time PCR von β-Actin (A) und GAPDH (B). Die MW ± STABW der relativen Expression sind gegen die einzelnen Ratten / Stadien aufgetragen (WKY-04 = Kontrolle = 1).
3.8.4 Relative Quantifizierung von Kandidaten für differentielle Genexpression

In Abb. 3.16 sind beispielhaft die Schmelzkurven einer real-time PCR für das Gen γ-Sarcoglycan abgebildet. Alle Kurven sind nahezu identisch und weisen einen gemeinsamen großen Peak bei 86,7°C auf, der den Schmelzpunkt darstellt. Um zu vermeiden, dass eventuelle, unspezifische Produkte erfasst werden, erfolgt die Detektion des Fluorophors SYBR-Green I in jedem Zyklus erst bei 85°C.

Wie schon zu Beginn des Abschnitts 3.8 erwähnt, wurden die Proben auf ihre optische Dichte normalisiert. Es wurden mehrere unabhängige Experimente durchgeführt, wobei für jede Probe mindestens eine Dreifachbestimmung erfolgte. Aus den Ergebnissen der relativen Genexpression wurden dann die entsprechenden Mittelwerte mit Standardabweichungen berechnet. In den folgenden Diagrammen wurden die mRNA-Expression der einzelnen Gene relativ zur Kontrolle WKY-04 = 1 aufgetragen.

Abb. 3.16: Die Schmelzkurven-Analyse der PCR-Produkte für das Gen γ-Sarcoglycan (jeweils Dreifachbestimmung für SHR-04, SHR-12, SHR-26, WKY-04, WKY-12 und WKY-26) weist einen gemeinsamen Schmelzpunkt bei 86,7°C auf.
Klon 12: *gamma sarcoglycan* (*Sgcg*)

![Graphik](Abb. 3.17: Klon 12 (*Sgcg*): Grafische Darstellung der Ergebnisse mehrerer real-time PCR. Die relative Expression bezogen auf die Kontrolle WKY-04 = 1 ist als MW ± STABW gegen die drei verschiedenen Entwicklungsstadien von SHR bzw. WKY aufgetragen.)
Klon 28-2: *titin, transcript variant novex-2 (Ttn)*

<table>
<thead>
<tr>
<th>Ttn</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0</td>
</tr>
<tr>
<td>0,2</td>
</tr>
<tr>
<td>0,4</td>
</tr>
<tr>
<td>0,6</td>
</tr>
<tr>
<td>0,8</td>
</tr>
<tr>
<td>1,0</td>
</tr>
<tr>
<td>1,2</td>
</tr>
<tr>
<td>1,4</td>
</tr>
<tr>
<td>1,6</td>
</tr>
</tbody>
</table>

Abb. 3.18: Klon 28-2 (Ttn): Grafische Darstellung der Ergebnisse mehrerer real-time PCR. Die relative Expression bezogen auf die Kontrolle WKY-04 = 1 ist als MW ± STABW gegen die drei verschiedenen Entwicklungsstadien von SHR bzw. WKY aufgetragen.
Klon 33: calmodulin binding transcription activator 1 (Camta1)

Abb. 3.19: Klon 33 (Camta1): Grafische Darstellung der Ergebnisse mehrerer real-time PCR. Die relative Expression bezogen auf die Kontrolle WKY-04 = 1 ist als MW ± STABW gegen die drei verschiedenen Entwicklungsstadien von SHR bzw. WKY aufgetragen.
Klon 65: solute carrier family 35, member F5 (Slc35f5)

![Graphische Darstellung der Ergebnisse mehrerer real-time PCR](image)
Klon 92: *goliath protein* (Gp)

Abb. 3.21: Klon 92 (Gp): Grafische Darstellung der Ergebnisse mehrerer real-time PCR. Die relative Expression bezogen auf die Kontrolle WKY-04 = 1 ist als MW ± STABW gegen die drei verschiedenen Entwicklungsstadien von SHR bzw. WKY aufgetragen.
Klon 77: similar to epidermal growth factor receptor substrate 15-like 1 (Eps15R)

Methodisch gesehen unterschied sich der Klon 77 im Vergleich zu den anderen quantitativ untersuchten cDNA-Klonen dahingehend, dass bei ihm mittels real-time RT-PCR nur dann Amplifikationsprodukte erhalten werden konnten, wenn die vorausgehende reverse Transkription anstatt mit dem normalerweise benutzten poly(dT) cDNA Synthese Primer, mit einem für Klon 77 spezifischen Primer durchgeführt wurde.

Die Ergebnisse der quantitativen Expressionsanalysen für das Eps15r-Gen des Klons 77 sind in Abb. 3.22 gezeigt. Das Gen für Eps15r ist ein Beispiel für ein Gen, dessen Quantifizierung auf keinerlei Regulation während der Entwicklung zur Myokardhypertrophie schließen lässt. Weder in der Gruppe der SHR, noch bei den WKY-Kontrolltieren lässt sich zwischen den einzelnen Entwicklungsstadien ein signifikanter Unterschied in der Genexpression feststellen.

Abb. 3.22: Klon 77 (Eps15r): Grafische Darstellung der Ergebnisse mehrerer real-time PCR. Die relative Expression bezogen auf die Kontrolle WKY-04 = 1 ist als MW ± STABW gegen die drei verschiedenen Entwicklungsstadien von SHR bzw. WKY aufgetragen.
4 Diskussion

4.1 cDNA-Subtraktion

4.2 Northern Blot-Analysen

4.3 Relative Quantifizierung durch *real-time* RT-PCR

4.3.1 Suche nach geeigneten Referenzgenen

Die Auswahl des Referenzgens für die hier durchgeführten Untersuchungen orientierte sich an der in der Literatur publizierten allgemein üblichen Vorgehensweise. So benutzten im Jahr 1999 von den in *high impact*-Journalen veröffentlichten RNA-Transkriptionsanalysen über 90 % nur ein Referenzgen, wobei meistens die Glycerinaldehyde-3-Phosphat-Dehydrogenase (GAPDH), das β-Actin (ACTB) sowie die 18S und 28S rRNA verwendet wurden (Suzuki *et al.*, 2000).

Aufgrund dieser Erkenntnisse wurden Testläufe der quantitativen *real-time* PCR mit β-Actin durchgeführt. Die dabei erzielten Ergebnisse (Abb. 3.15, A) genügen aber nicht den Erfordernissen, die im Rahmen der vorliegenden Arbeit an die experimentelle Durchführung einer als signifikant einzuordnenden quantitativen Expressionsanalyse gestellt wurden. Das Gen war zwar in der Kontrollgruppe nahezu konstant exprimiert, unterlag aber gerade bei den SHR einer sehr starken Regulation. So war β-Actin in der Gruppe der SHR-26 im Vergleich zur SHR-04-Gruppe ungefähr doppelt so stark exprimiert (Abb. 3.15, A). Daraufhin wurden die gleichen Experimente mit GAPDH

Des Weiteren wurde vielfach darauf hingewiesen, dass die verwendeten Kontrollgene nicht viel stärker exprimiert sein sollten als das zu untersuchende Gen. Denn in kleinen oder degradierten Proben könnte die Menge an spezifischer Zielsequenz unter dem Limit der PCR-Detektion liegen, während das Kontrollgen ein positives Amplifikationssignal zeigt, was zu falsch-positiven Ergebnissen führen würde. Manche der häufig benutzten Kontrollgene, wie β-Actin und GAPDH werden auf einem viel höheren Niveau exprimiert als andere Gene (Lion, 2001).

4.3.2 Neue und konventionelle Verfahren der quantitativen Datenanalyse

Die Methoden der Datenanalyse der *real-time* PCR können in absolute und relative eingeteilt werden. Die absolute Quantifizierung schließt die Generierung einer Standardkurve ein, die auf einer bekannten Kopienanzahl basiert. Dagegen werden beim relativen Verfahren die Veränderungen im Expressionsniveau relativ zu einer Serie anderer experimenteller Proben, typischerweise der experimentellen Kontrolle, bestimmt (Livak, 1997; Winer et al., 1999). Es handelt sich hierbei um die bereits angesprochenen Referenzgene. Aufgrund der Expressionsschwankungen einzelner Referenzgene, sollte mehr als ein Referenzgen in Transkriptanalysen verwendet werden, um reproduzierbare Ergebnisse zu erhalten (Bustin, 2002; Vandesompele et al., 2002).

Im Rahmen dieser Arbeit war es nicht möglich, ein geeignetes Referenzgen zu finden, um es als Kontrolle für die relative Quantifizierung einzusetzen. Aus diesem Grund wurde die Expression der vier Wochen alten WKY-Ratten als Bezugspunkt gewählt. Bei jeder Genquantifizierung erhielt die Gruppe der WKY-04 als interne Kontrolle den Wert 1 zugeordnet. Auf diesen Basiswert wurden die Quantifizierungsergebnisse der anderen Untersuchungsgruppen bezogen und als relative Expression der einzelnen Gene bezogen auf WKY-04 = 1 angegeben, wie es z. B. in Abb. 3.17 dargestellt ist.

4.4 Charakterisierung von Kandidatengenen aus real-time RT-PCR

Im folgenden werden die in der vorliegenden Arbeit identifizierten, differentiell exprimierten Gene aus der Tab. 3.7 und der Tab. 3.8 mittels in silico-Analysen und Literaturrecherchen näher charakterisiert. Der Schwerpunkt lag dabei auf bereits bekannten Zusammenhängen mit der Myokardhypertrophie oder Kardiomyopathien.

4.4.1 Gamma sarcoglycan (Sgcg)

dass sich ein Sarcoglycan-Komplex nur formieren konnte, wenn alle vier Wildtyp-cDNAs der Sarcoglycane cotransfiziert wurden (Holt et al., 1998). Aus diesem Grund widersprechen die Ergebnisse der mit Muskeldystrophie assoziierten Überexpression von Sgcg in transgenen Mäusen nicht den vorliegenden Beobachtungen einer erhöhten Sgcg-Expression in der SHR.

Zusammengefasst geben die in der vorliegenden Arbeit erlangten Ergebnisse einen Hinweis darauf, dass Sgcg schon im Herz der normotensiven SHR-04 reduziert exprimiert wird im Vergleich zu den WKY-04-Kontrolltieren. Das deutet auf vorhandene molekulare Veränderungen bereits im nicht-hypertrophen Herz in einer frühen Entwicklungsphase hin. Überdies kommt es während der Entwicklung zur myokardialen Hypertrophie zu einem Anstieg der Expression von Sgcg, was im Zusammenhang mit einer Schutzfunktion des DGCs gesehen werden könnte. Die im Rahmen dieser Arbeit erhobenen und in der Literatur beschriebenen Daten weisen dem Sgcg eine potentielle Bedeutung bei der Entwicklung der Herzhypertrophie zu.

4.4.2 Titin, transcript variant Novex-2 (Ttn)

Im menschlichen Genom ist das TTN-Gen auf Chromosom 2q31 lokalisiert und besteht aus beachtlichen 363 Exonen (Granzier et al., 2004). Mutationen in verschiedenen Exonen von TTN führen zu den im Folgenden aufgeführten drei bekannten vererbhbaren Muskelerkrankungen. Analog zu den Mutationen der Sarcoglycane, führen die Mutationen des TTN zum Krankheitsbild der autosomal-rezessiven Form der LGMD Typ 2J (Finsterer, 2004). Außerdem sind Mutationen im TTN-Gen u. a. für die familiäre hypertrophe Kardiomyopathie verantwortlich, einer autosomal dominanten Krankheit, die durch unerklärliche linksventrikuläre Hypertrophie (in Abwesenheit einer Hypertonie) und eine untypische Anordnung der Myocyten charakterisiert ist (Ramirez et al., 2004). Überdies sind Mutationen im TTN-Gen auch mit der dilatierten Kardiomyopathie assoziiert (Granzier et al., 2004).

Das TTN-Gen kodiert für ein ca. 3-3,7 MDa großes filamentöses Protein der quergestreiften Muskulatur, das einerseits die Elastizität des Sarkomers kontrolliert und andererseits über Bindungsstellen für Muskel-assoziierte Proteine als Adhäsionsvorlage
für den Zusammenbau der kontraktilen Einheiten in der Muskelzelle dient (Freiburg et al., 2000). Die Polypeptidkette wird in ein N-terminales I-Band und ein C-terminales A-Band unterteilt (Abb. 4.2, B) und erstreckt sich mit einer Länge von ca. 1 µm von der Z-bis zur M-Linienregion über die Hälfte des Sarkomers (Tskhovrebova et al., 2003). Die I-Bandregion stellt die elastische Komponente des Sarkomers dar und reagiert auf Dehnung durch eine myofibrilläre passive Spannung.

![Diagramm der Titin-Struktur](http://www.columbia.edu/cu/biology/faculty/fernandez/FernandezLabWebsite/learn_proteins/titin.htm)

Abb. 4.2: A, B) Struktur und Lokalisation von Ttn im Muskelsarkomer. Ttn ist ein langes und dünnes Protein mit einer Größe von 3.0 - 3.7 Mda, erstreckt sich über die Hälfte eines Sarkomers (rote Linie in B) und verbindet die A-Bandregion mit der I-Bandregion. Der I-Band-Bestandteil wurde als funktionell elastische Region identifiziert. C) Die I-Bande von Ttn wird durch ihre vier charakteristischen Abschnitte festgelegt: Die proximale und distale Ig-Domänen (Immunglobulin-Domänen), die unikale N2B-Sequenz und die PEVK-Region.

Drei verschiedene Sequenzelemente sind für die Dehnbarkeit der I-Bandregion von Ttn verantwortlich, die als seriell verbundenes Federsystem wirken (Freiburg et al., 2000), (Abb. 4.2, C): 1. zwei Regionen von Tandem-Immunglobulin-Domänen (Ig), 2. eine PEVK-Region, die reich an Prolin (P), Glutamat (E), Valin (V) und Lysin (K) ist und 3. die so genannte N2B-Sequenz des kardialen Ttn. Die Variabilität in der I-Bandregion wird durch Unterschiede in der Elastizität der verschiedenen Ttn-Isoformen verursacht.

Es sind bisher viele Ttn-Varianten identifiziert worden. In diesem Zusammenhang ist die Transkriptvariante N2B als die im Herzmuskel vorherrschende Isoform zu nennen. Sie enthält im Vergleich zu der im Skelettmuskel überwiegenden Isoform N2A eine

4 Abb. modifiziert entnommen von http://www.columbia.edu/cu/biology/faculty/fernandez/FernandezLabWebsite/learn_proteins/titin.htm
verkürzte PEVK-Region. Die in dieser Arbeit als Kandidat für die Herzhypertrophie-Entwicklung identifizierte Isoform Novex-2 ist im Herz- und Skelettmuskel vertreten und ist außer einer typischen Abfolge von 192 Aminosäuren in der I-Bandregion nahezu identisch mit der Hauptform N2B im Herz (Ramirez et al., 2004).

Auf der anderen Seite wurde für Ttn bereits gezeigt, dass selbst kleine Veränderungen in der Expression seiner Transkripte im Zusammenhang mit Herzanormalien stehen. Zum Beispiel ist bei Patienten mit Herzversagen im Endstadium, das aus einer nicht-ischämischen dilatierten Kardiomyopathie resultierte, das Verhältnis der N2BA-Isoform zur N2B-Isoform im Vergleich zum gesunden Herz (0,56±0,06) signifikant erhöht (0,97±0,07) (Nagueh et al., 2004). Patienten mit einem hohen Verhältnis der N2BA:N2B-Expression sind durch eine signifikant reduzierte passive Muskelsteifheit gekennzeichnet. Analog dazu sind die Herzen von Hunden mit Tachykardie-induzierter dilatierter Kardiomyopathie durch Veränderungen dieses Verhältnisses im Vergleich zu gesunden Tieren charakterisiert (Wu et al., 2002). Deshalb können Veränderungen der Verhältnisse der Ttn-Isoformen im Herz in Verbindung gebracht werden mit Anormalien der Herzfunktion. Darüber hinaus wurde gezeigt, dass sich das Verhältnis der Ttn-Isoformen im Herz auch in der frühen Entwicklung verändert (Opitz et al., 2004). Das zeigt die Bedeutung eines bestimmten Expressionsmusters der Ttn-Isoformen für die Entwicklung. Deshalb könnte ein zweifach niedrigeres Expressionsniveau der Isoform Novex-2 bei der SHR-04, wie es in der vorliegenden Arbeit beobachtet wurde, auf eine fehlerhafte Entwicklung der Herzen hinweisen. Da die Ttn-Isoformen für die Elastizität der Muskelfasern verantwortlich sind, kann eine Veränderung des Novex-2 Niveaus bei der SHR-04 ein Hinweis auf Veränderungen der Elastizität der Muskelfasern geben, was in der Folge die pathologische Entwicklung des Herzens beeinflusst.

Überdies konnte in einer neueren Studie von Lange und Kollegen gezeigt werden, dass Ttn durch seine Kinasedomäne die Genexpression der immediate-early genes, wie z. B. c-fos, kontrollieren kann (Lange et al., 2005). Diese Gene spielen eine zentrale Rolle bei der Antwort des Muskels auf hypertrophe Stimuli (einschließlich des mechanischen Stresses). Zusätzlich beschäftigte sich eine weitere Untersuchung mit der MARP-Familie (muscle ankyrin repeat proteins), deren Mitglieder mit ihren Ankyrin-repeats Bindungsstellen für Ttn enthalten und mit anderen Komponenten einen
Signalkomplex bilden. Die Autoren gehen davon aus, dass die MARPs durch Dehnung reguliert werden und dass somit die Ttn-N2A-basierten Stresssignale mit einer MARP-basierten Regulation der Muskelgene expression verbunden werden (Miller et al., 2003). Diese Funktion des Ttn bei der Signalübertragung zur Steuerung der Genexpression im Muskel würde zusätzlich auf die Bedeutung eines erniedrigten Expressionsniveaus des Ttn bei der SHR-04 hinweisen, da es als Signal für die Entwicklung der Herzhypertrophie möglicherweise eine Rolle spielt.

Zusammengefasst zeigen die vorliegenden Daten, dass die Ttn-Isoform Novex-2, analog zum Gen Sgcg, in der SHR-04 im Vergleich zur WKY-04 reduziert ist. Das weist auf Abnormalitäten der zugrunde liegenden molekularen Mechanismen bereits in den nichthypertrophen Herzen der SHR-04 im Vergleich zur gleichaltrigen Kontrolle hin. Darüber hinaus machen der Anstieg der Novex-2-Expression während der Entwicklung der Herzhypertrophie und die große Rolle der Ttn-Isoformen bei kardialen Funktionsstörungen das Gen Novex-2 zu einem aussichtsreichen Kandidaten für die weitere Forschung im Zusammenhang mit Herzhypertrophie.
Calmodulin-binding transcription activator (Camta1)

Unter Verwendung eines cDNA-Subtraktions screenings von SHR-12 nach SHR-26 wurde Klon 33 gefunden. Die Northern Blot-Analyse mit cDNA vom Klon 33 als Sonde und mRNA der drei genannten Entwicklungsstadien von SHR und WKY identifizierten eine mit Herzhypertrophie assoziierte Induktion der Genexpression. Diese Daten wurden mittels real-time PCR-Analysen bestätigt. Sequenzanalysen der klonierten cDNA des Klon 33 wiesen eine 92 %-ige Homologie zum Gen Camta1 (Calmodulin-binding transcription activator 1) der Maus und eine 84 %-ige Homologie zum menschlichen CAMTA1 auf. Für das Rattengenom ist Camta 1 vorhergesagt.

Die CAMTA-Proteine gehören zu einer Familie von Transkriptionsfaktoren, die als typische Merkmale u. a. Calmodulin-bindende Domänen (IQ-Motive), Ankyrin-repeats und eine CG-1-Domäne enthalten (Bouche et al., 2002). Beim Menschen wurden zwei CAMTA-Proteine identifiziert, CAMTA1 und CAMTA2. Das ca. 6,6 kb große Gen des CAMTA1 befindet sich beim Menschen auf Chromosom 1p36.23, während Camta1 bei der Maus und bei der Ratte auf Chromosom 4E2 bzw. 5q36 lokalisiert ist. Die Aminosäurehomologie von CAMTA1 zwischen Maus und Mensch beträgt 94,1 % (Katoh, 2003). Zurzeit ist die Funktion der Calmodulin-Bindung an CAMTA1 noch unbekannt, die im Cytosol und/ oder im Zellkern stattfinden kann.

Die grundlegende Funktion des Ca$^{2+}$ in der Kardiomyocyte ist es, Erregungsabläufe und Kontraktion miteinander zu verbinden (Frey et al., 2000). Die Veränderung der Ca$^{2+}$-Konzentration resultiert in der Aktivierung mehrerer Signalübertragungswege, die dann die Transkriptionsaktivität von Genen verändert (Zhang et al., 2004). Viele Aktionen des Ca$^{2+}$ werden durch seine Interaktion mit dem Bindungspartner von CAMTA-Proteinen, dem Calmodulin, vermittelt. Das Calmodulin dient als intrazellulärer Sensor für Ca$^{2+}$-Ionen und aktiviert selektiv bestimmte downstream gelegene Signalübertragungswege als Antwort auf lokale Veränderungen der Ca$^{2+}$-Konzentration. Es gibt gesicherte Beweise, dass Calmodulin mit der Entwicklung von Herzhypertrophie assoziiert ist (Gruver et al., 1993; Colomer et al., 2000). Während Calmodulin-transgene Mäuse durch kardiale Hypertrophie charakterisiert sind, können Calmodulin-Mutanten, die zwar Ca$^{2+}$, aber nicht downstream gelegene Ziele binden können, nicht mit Herzhypertrophie in Zusammenhang gebracht werden. Außerdem ist Calmodulin verantwortlich für die Aktivierung der Phosphatase Calcineurin und die Ca$^{2+}$/Calmodulin-abhängige Kinase II Isoform δ (CaMKII δ) (Ikura et al., 2002; Wilkins et al., 2004; Zhang et al., 2004). Erhöhte Aktivitäten beider Enzyme sind mit Herzhypertrophie assoziiert, was durch die Aktivierung der Expression verschiedener Gene durch Phosphorylierung/ Dephosphorylierung von Transkriptionsfaktoren erklärt wird. Jedoch konnte für das Calmodulin selbst bisher keine Bindung von Transkriptionsfaktoren gezeigt werden, die bei der Herzhypertrophie eine Rolle spielen könnten.

4.4.4 Solute carrier family 35, member F5 (Slc35f5)

In der vorliegenden Untersuchung wurde eine Induktion der Expression des putativen Slc35f5 während der Entwicklung zur Herzhypertrophie in der SHR gefunden. Über das Gen Slc35f5 sind lediglich die Lokalisation und eine vorhergesagte Struktur des Gens bekannt. Im menschlichen Genom ist das Gen auf Chromosom 2q14.1, im Genom der Ratte auf Chromosome 13q11 und im Genom der Maus auf dem Chromosom 1E2.3 lokalisiert. Im Herz der SHR-04 ist die Expression des Slc35f5 im Vergleich zum WKY-04-Herz um das vierfache erniedrigt. Diese Befunde der vorliegenden Arbeit unterstreichen auch die zu Sgcg und Ttn erzielten Ergebnisse in der Weise, dass sich die Genexpression im Herz der SHR-04 bereits wesentlich von der der WKY-04
Diskussion

4.4.5 Goliath protein (Gp)

Klon 92 ist ebenfalls ein Resultat der cDNA-Subtraktion von SHR-12 nach SHR-26. Die Northern Blot-Analyse identifizierte eine erhöhte Expression der cDNA des Klons 92 in der SHR im Vergleich zur WKY. Die Sequenanalyse der klonierten cDNA offenbarte eine 99 %-ige Homologie zur mRNA des Goliath-Proteins der Ratte (Gp), eine 98 %-ige Homologie zur mRNA des Gp der Maus und eine 92 %-ige Homologie zur mRNA des humanen GP. Bei der Maus ist das Gen auf Chromosom 11B1.2 lokalisiert und beim Menschen auf Chromosom 5q35.3.

Das Gp-Gen in Maus, Mensch und Ratte ist dem Zinkfingerprotein G1 (Goliath-Protein) in Drosophila ähnlich (Bouchard et al., 1993). In Drosophila wird G1 während der embryonalen Entwicklung im Mesoderm exprimiert, das später die inneren Strukturen, wie z. B. die Muskulatur, ausbildet. Ausgehend von diesen Daten wird angenommen, dass es sich beim Gp um einen Transkriptionsfaktor handelt, der die Genexpression während der Mesodermstrukturierung reguliert. Die Expression des Maus Gp erwies sich in myeloblastischen Zellen nach Interleukin 3 (IL3)-Entzug als hochreguliert (Baker et al., 2000). Das führte zu der Annahme, dass das Gen die durch den Entzug von Wachstumsfaktoren induzierte Apoptose von Rückenmark-Vorläuferzellen regulieren könnte. Auch von der Ratte konnte das homologe Gen identifiziert werden (Guais et al., 2004). Die Ratten-mRNA (1,85 kb) wird translatiert
in ein ubiquitär vorkommendes Hauptprotein von 28 kDa und drei kleinere Isoformen (50, 46, 36 kDa), die hauptsächlich in Herz, Leber, Lunge und Magen exprimiert werden. Guais et al. konnten bei ihren Untersuchungen an Hoden die Goliath-Beteiligung an der Apoptose nicht bestätigen. Aufgrund der mitochondrialen Lokalisation vermuten sie eine Rolle in der Energieproduktion oder bei der Geißelbewegung für die Mobilität der Spermien.

4.4.6 Epidermal growth factor receptor substrate (Eps15r)

Klon 77, der als Ergebnis aus der cDNA-Subtraktion SHR-12 nach SHR-26 hervorging, zeigte im Northern Blot eine stark erhöhte Genexpression in der SHR im Vergleich zur WKY. Die Sequenzaanalyse der klonierten cDNA des Klons 77 identifizierte eine Homologie von 98 % zum Eps15r der Ratte, das auf dem Chromosom 16p14 lokalisiert ist. Die Homologie zum Eps15r der Maus auf Chromosom 8 beträgt 93 %, die des EPS15R des Menschen auf Chromosom 19p13.11 beträgt 84 %.

Für das Gen Eps15r konnte im Rahmen dieser Arbeit mit Hilfe der real-time PCR keine differenzielle Genexpression nachgewiesen werden. So konnte mittels der durchgeführten real-time Experimente die im Northern Blot beobachtete Erhöhung der Genexpression des putativen Eps15r nicht bestätigt werden. Da die real-time PCR eine sehr sensitive Quantifizierungsmethode ist, muss davon ausgegangen werden, dass Eps15r nicht mit Herzhypertrophie in Verbindung gebracht werden kann.
4.4.7 Beta actin (Actb)

4.5 Charakterisierung weiterer Kandidatengene aus Northern Blots
Nicht alle der aufgrund von Sequenzhomologien gefundenen Gene aus Tab. 3.7 und Tab. 3.8 konnten im Verlauf dieser Arbeit quantitativ untersucht werden. Durch die im Folgenden beschriebenen Zusammenhänge mit Kardiomyopathien und Signalkaskaden könnten diese putativen Kandidatengene bei der pathologischen Veränderung des Herzens eine Rolle spielen. Aufgrund der Vorbefunde und Literaturangaben erscheint eine weitere Charakterisierung dieser Gene, z. B. durch quantitative real-time PCR, sinnvoll.

4.5.1 Gap junction membrane channel protein alpha 1 (Gja1)
Die cDNA-Subtraktion von SHR-04 nach SHR-12 führte zu den Klonen 32 und 33. Beide Klone waren im Northern Blot durch ein 3,5 kb großes Transkript charakterisiert. Sequenzanalysen zeigten, dass Klon 32 und Klön 33 ein nahezu identisches Insert enthalten. Diese cDNA weist eine Homologie von 97 % zum Gja1 der Ratte auf Chromosom 20q11 und eine von 84 % zum Gjal der Maus auf Chromosom 10 auf. Die cDNA dieser Klone hat Homologie zu einer mRNA-Region von Gja1, welche im menschlichen GJA1 nicht vorhanden ist. Das Gja1-Gen kodiert für ein gap junction-Protein, das funktionell an der Zell-Zell-Kommunikation beteiligt ist. Gap junction-Proteine werden auch als Connexine bezeichnet und bilden eine Multigenfamilie von polytypischen Membrankanalproteinen (Yeager, 1998). Deren Aufbau aus vier hydrophoben Transmembrandomänen mit den N- und C-Termini auf der cytoplasmatischen Membranoberfläche soll die Abb. 4.3 b schematisch verdeutlichen. Das Hauptprotein der gap junction im Herz ist das 43 kDa große Connexin alpha 1, das auch als
Connexin 43 (Cx43) bezeichnet wird (Yeager, 1998; Saffitz et al., 2004). Sechs Cx43 oligomerisieren zu einem Halbkanal (Connexon). Der interzelluläre Kanal wird durch Kopplung zweier entsprechender Connexonen gebildet (siehe Abb. 4.3 a).

Die Kanäle des Cx43 sind in gap junction-Bereichen konzentriert, die wiederum in der Interkalationsscheibe lokalisiert sind (siehe Abb. 4.3 a). Die vorwiegende Bedeutung des Cx43 im Myokard liegt darin, die Weiterleitung des Aktionspotentials zwischen den Zellen zu vermitteln, um die Herzkonztraktion zu synchronisieren. Herzmuskelzellen sind keine Synctien, sondern einzelne Zellen mit Kern, die an den Enden durch Interkalationsscheiben verbunden sind, die eine Zelle an die nächste heften. Eine Umgestaltung der Interkalationsscheiben wird mit Kardiomyopathien (Ferreira-Cornwell et al., 2002) und der kompensierten linksventrikulären Hypertrophie (Wang et al., 1999a) in Verbindung gebracht. Ein Umbau der gap junction-Organisation und Veränderungen der Cx43-Expression sind typische Merkmale menschlicher Herzerkrankungen, die meist mit arrhythmischen Tendenzen einhergehen (Saffitz et al., 2004; Schulz et al., 2004).

Abb. 4.3: Schematische Darstellung von gap junctions

Die Northern Blot-Analysen der vorliegenden Arbeit für die Klone 32 und 33 identifizierten eine erhöhte Expression des Cx43-Gens in der SHR-12 im Vergleich zur SHR-04, WKY-04 und WKY-12. Das weist darauf hin, dass die Entwicklungsphase der Herzhypertrophie mit einem Anstieg der Cx43-Expression assoziiert ist. Diese Daten entsprechen derer anderer Cx43-Studien. Kostin und Kollegen zeigten, dass die frühen Stadien der Herzhypertrophie bei Patienten durch ein erhöhtes Cx43-Niveau charakterisiert sind (Kostin et al., 2004). Darüber hinaus bestätigen Untersuchungen am Meerschweinchen diese Beobachtungen (Formigli et al., 2003). Jedoch ist die chronische Hypertrophie des Herzens mit einem erniedrigten Cx43-Expressionsniveau verbunden (Severs, 2001; Liu et al., 2002a; Kostin et al., 2003), und es wurde eine Verminderung von Cx43 in der Endphase der Herzinsuffizienz gefunden (Dhein et al., 2002). Der Anstieg des Cx43 wird als kompensatorische Antwort der Kardiomyocyten auf das frühe Stadium einer ventrikulären Volumenüberlast gewertet.

Untersuchungen zum direkten Einfluss von mechanischer Belastung (pulsierende Dehnungen) der Kardiomyocyten auf die Cx43-Expression ergaben ebenfalls einen signifikanten Anstieg des Cx43-Niveaus als Folge des akuten Stimulus (Wang et al., 2000; Zhuang et al., 2000). So wird die Entwicklung einer akuten hypertrophen Antwort des Myokards durch mechanische Belastung durch eine Hochregulation der Cx43-Proteinexpression begleitet, die sich aber mit Fortschreiten der Hypertrophie in eine Reduktion der myokardialen Cx43-Expression umkehrte (Formigli et al., 2003; Kostin et al., 2004).

Da das Herz der SHR-12 im Gegensatz zu SHR-04 und den normotensiven Kontrollen durch erhöhten Blutdruck (Hypertonie) gekennzeichnet ist und folglich zu einer zunehmenden mechanischen Belastung der Myokardzellen führt, ist es durchaus möglich, dass das erhöhte Cx43-Niveau ein Resultat der etablierten Hypertonie in der SHR-12 darstellt. Von der anderen Seite kann diese veränderte Expression in der SHR-12 auch von einer chemischen Stimulation herrühren, die während der Hypertrophieentwicklung stattfindet. Studien zur gap junction-Umgestaltung als Antwort auf chemische Mediatoren der ventrikulären Hypertrophie haben gezeigt, dass verschiedene Wege der Signalübertragung, die u. a. Mediatoren wie Endothelin-1, Angiotensin-II und TGF-β einschließen, eine Erhöhung der Cx43-Expression auslösten (Dhein et al., 2002; Saffitz et al., 2004). Deswegen kann das erhöhte Expressionsniveau des Cx43 im Herz der SHR-12 mit einer erhöhten mechanischen Belastung und/ oder Veränderungen in der Signalübertragung in Verbindung gebracht werden. Zusammengefasst stimmen die in der Literatur veröffentlichten Daten zur Cx43-Expressionen in der frühen Phase der Herzhypertrophie mit den Ergebnissen der vorliegenden Arbeit überein, in der eine Zunahme der Cx43-Expression während der Entwicklung einer Myokardhypertrophie in der SHR gefunden wurde.
4.5.2 Cadherin 2, type 1, N-cadherin (Cdh2)

Die cDNA-Subtraktion von SHR-12 nach SHR-26 generierte den Klon 66, der die cDNA mit einer Homologie von 98 % zum Cdh2 der Ratte, von 93 % zum Cdh2 der Maus und von 85 % zum menschlichen CDH2 enthielt. Das Cdh2-Gen, das im Genom von Ratte, Maus und Mensch auf Chromosom 18 lokalisiert ist, kodiert für ein klassisches Cadherin der Cadherin-Superfamilie. Das menschliche CDH2 besteht aus 16 Exons, die eine Länge von 72 kb überspannen. Das kodierte Protein ist ein Ca\(^{2+}\)-abhängiges Zell-Zell-Adhäsionsglycoprotein, bestehend aus fünf extrazellulären Cadherin-repeats, einer Transmembranregion und einem hoch konservierten cytoplasmatischen Schwanz. Studien zur Rolle des CDH2s bei Krankheiten, die die Zelladhäsion betreffen, identifizierten 8 Sequenzpolymorphismen (Harada et al., 2002). Sowohl Cdh2 als auch Cx43 sind mit an der Verbindung der Kardiomyocyten untereinander beteiligt und sind beide in der Interkalationsscheibe der Zellen lokalisiert (Saffitz et al., 2004). Während Cx43 mit der Übertragung elektrischer Signale assoziiert ist (Schulz et al., 2004), scheint das Cdh2 in die Orientierung der Kardiomyocyten infolge mechanischer Dehnung verwickelt zu sein (Matsuda et al., 2005).

Von Interesse in diesem Zusammenhang scheint auch zu sein, dass knock out Mäuse für Cdh2 durch ein erniedrigtes Expressionsniveau von Cx43 gekennzeichnet sind (Kostetskii et al., 2005; Li et al., 2005). Außerdem traten beim Aufbau von Zell-Zell-Kontakten durch Kardiomyocyten in Kultur die gap junctions mit Cx43 nur im Anschluss an adhesion junctions auf (Hertig et al., 1996a; Hertig et al., 1996b; Kostin et al., 1999; Reinecke et al., 1999). Akar und Kollegen konnten bei nicht vorhandener Colokalisierung von Cx43 und Cdh2 einen Zusammenhang zum Herzversagen aufzeigen (Akar et al., 2004), und die Inaktivierung der beiden Gene in knock out Mäusen führte zu Herzarrhythmien (Gutstein et al., 2001; Kostetskii et al., 2005; Li et al., 2005). Somit kann von einer engen funktionellen Verknüpfung der gap- und
adhesion junctions ausgegangen werden, und auch der parallele Anstieg der Genexpression von Cx43 und Cdh2 während der Herzhypertrophie-Entwicklung liebe sich erklären. Zusammengefasst kann der in der vorliegenden Arbeit bei der SHR beobachtete Anstieg der Cdh2-Expression die gemeinsame Bedeutung von Cdh2 und Cx43 im hypertrophierenden Herz bekräftigen.

4.5.3 Acyl-Coenzyme A dehydrogenase, long chain (Acadl)

Für den Klon 58, der aus der cDNA-Subtraktion SHR-12 nach SHR-26 resultierte, konnte eine 96 %-ige Homologie zum Acadl-Gen, der langkettigen Acyl-Coenzym A-Dehydrogenase, der Ratte auf Chromosom 9q32 und eine 92 %-ige Homologie zum Acadl-Gen der Maus auf Chromosom 1, 27,3 cM, gefunden werden. Das von diesem Gen kodierte Protein gehört zur Familie mitochondrialer Acyl-CoA-Dehydrogenasen, die u. a. am Fettsäuremetabolismus beteiligt sind und ist eines von vier Enzymen, die den initialen Schritt der β-Oxidation geradkettiger Fettsäuren (Acadl: langkettige C8-C18 Fettsäuren) katalysieren (Sambandam et al., 2002). Defekte in diesem Gen sind die Ursache der Krankheit ACADL-Defizienz auf dem humanen Chromosom 2q34-q35, die zur nichtketonigen Hypoglykämie führt.

In der vorliegenden Arbeit konnte im Northern Blot (Daten nicht gezeigt) eine Induktion der Expression des putativen Acadl-Gens im Herz der SHR während der Entwicklung der Herzhypertrophie von SHR-12 nach SHR-26 beobachtet werden. In diesem Zusammenhang ist bekannt, dass bei der Herzhypertrophie und der Herzinsuffizienz das myokardiale Hauptenergiesubstrat von den Fettsäuren zur Glukose wechselt und es zu einer dramatischen Herunterregulation der Fettsäure-verwertenden Enzyme kommt. Für die humane ACADL wurde eine reduzierte mRNA-Expression im hypertrophierten Herzen gefunden (Sambandam et al., 2002). Die Expression von Enzymen der Fettsäureoxidation war bei Menschen mit dilatierter Kardiomyopathie herunterreguliert (Sack et al., 1998). Beim chronisch hypertrophierten Herz erfolgt die metabolische Regulation auf transkriptioneller Ebene: das Herz wechselt zum fetalen Genprogramm, das Glukose gegenüber Fettsäuren bevorzugt (Sack et al., 2000; Taegtmeyer, 2002). Es wird angenommen, dass nukleäres PPARα (peroxisome proliferator-activated receptor α) eine Schlüsselrolle beim Substratwechsel im Herz übernimmt. PPARα gehört zu einer Familie von Liganden-aktivierten Transkriptionsfaktoren und ist bei der Herzhypertrophie deaktiviert und herunterreguliert. Davon betroffen sind auch die Enzyme des Fettsäuremetabolismus, wie z. B. Acadl, die von PPARα kontrolliert werden (Young et al., 2001). Deshalb ist die chronische Hypertrophie mit einer verringerten Expression von Acadl und PPARα assoziiert. Für die Entwicklung der Herzhypertrophie in der SHR ist auch bekannt, dass in der Aorta
und den mesenterischen Arterien eine erhöhte Expression von PPARα vorliegt (Diep et al., 2001). Bei dem Anstieg der PPARα-Expression wird eine kompensatorische Rolle während der Umgestaltung der Blutgefäße in der SHR vermutet. Eine ähnliche Bedeutung könnte dem PPARα im Herz bei der Entwicklung der Herzhypertrophie zukommen, was sich in einer erhöhten Expression von PPARα mit folgendem Anstieg der Acadl-Expression widerspiegeln sollte.

Ein zusätzlicher Beleg für den Zusammenhang zwischen Acadl und Myokardhypertrophie ist die chromosomale Colokalisation dieses Gens mit drei QTLs, die mit Bluthochdruck assoziiert sind:

- QTL 34 für Bluthochdruck, Kreuzung von Salz-resistenten und Salz-sensitiven Ratten, assoziiert mit Bluthochdruck (Moreno et al., 2003)
- QTL 185 für Bluthochdruck, Kreuzung von Brown Norway und Dahl Salz-sensitiven Ratten, assoziiert mit Bluthochdruck (Rapp et al., 1998)
- QTL 53 für Bluthochdruck, Kreuzung von Dahl Salz-sensitiven Ratten mit SHR, assoziiert mit Bluthochdruck und Herzgewicht (Garrett et al., 2000)

Da die Entwicklung der Herzhypertrophie mit einer Erhöhung des Blutdrucks verbunden ist und das Gen Acadl in einer chromosomalen Region lokalisiert ist, die mit Bluthochdruck assoziiert ist, wäre eine Induktion dieses Gens während der Herzhypertrophie-Entwicklung durchaus denkbar. Auch die PPARα-abhängige Regulation der Acadl-Transkription spricht für diese Annahme.

4.5.4 Nucleolar protein 3 (apoptosis repressor with CARD domain) (Nol3)

Klon 75 ging aus der cDNA-Subtraktion von SHR-04 nach SHR-12 hervor und hat eine 98 %-ige Homologie zum Gen Nol3 der Ratte, das auf Chromosom 19q11 lokalisiert ist. Bei dem Genprodukt von Nol3 der Ratte handelt es sich um ein Apoptose-regulierendes Protein, das fast ausschließlich nur in myogenen Zellen exprimiert wird. Nol3 wird auch als *apoptose repressor with caspase recruitment domain* (ARC) bezeichnet, der sowohl die Aktivierung einiger Initiator-Caspasen als auch Caspase-unabhängige Ereignisse, die mit Apoptose in Beziehung stehen, blockiert (Neuss et al., 2001).

4.5.5 Muscleblind-like 2 (Mbnl2)

Das subtraktive cDNA-Screening von SHR-12 nach SHR-26 identifizierte den Klon 1, der folgende Sequenzhomologien aufwies: eine 99 %-ige Homologie zum Gen Mbnl2 der Ratte (Chromosom 15q24), eine 93 %-ige Homologie zum murinen Mbnl2 (Chromosom 14E4) und eine 88 %-ige Homologie zum humanen MBNL2, das auf Chromosom 13q32.1 lokalisiert ist. Das humane MBNL2-Gen auf Chromosom 13 kodiert für ein Zinkfinger-Protein, das dem muscleblind B protein von Drosophila melanogaster entspricht, bei der es für die Differentiation der Photorezeptoren benötigt wird. Die Funktion des Produkts des menschlichen Gens ist noch nicht geklärt. Das embryonale muscleblind (mbl) von Drosophila ist ein Zell kernprotein, das in der späten Phase der Embryonalentwicklung u. a. im somatischen Muskel exprimiert wird (Artero et al., 1998). Das humane Protein CHCR mit Homologie zu MBNL ist mit der degenerativen Muskelerkrankung Myotone Dystrophie und der Antagonisierung der Muskeldifferentiation assoziiert (Squillace et al., 2002).

4.5.6 Ribosomal protein L3 (Rpl3)

4.5.7 hnRNP methyltransferase-like 2 (Hrmt1l2)

Der Klon 46 wurde durch die cDNA-Subtraktion von SHR-12 nach SHR-26 erhalten. Die Sequenzanalyse dieses Klons zeigte folgende Homologien: 98 % zum Gen Hrmt1l2
der Ratte, das auf Chromosom 1q22 lokalisiert ist, 93 % zum murinen Hrmt1l2 auf Chromosom 7 23.1 cM und 88 % zum humanen HRMT1L2 auf Chromosom 19q13.3. Die heterogene nukleäre Ribonukleoprotein (hnRNP) Methyltransferase-gleich 2 (HRMT1L2) ist auch als Protein Arginin-Methyltransferase 1 (PRMT1) bekannt. PRMTs regulieren das Prozessing und die Reifung von mRNA durch die Veränderung der Aktivität nukleärer, RNA-bindender Proteine (hnRNPs) durch Methylierung (Pawlak et al., 2000; Scorilas et al., 2000). HRMT1L2 des Menschen auf Chromosom 19q13.3 besitzt drei Isoformen mit unterschiedlicher Verteilung in den Geweben, wobei im Herz die Formen 1 und 2 vorherrschend sind (Scorilas et al., 2000).

In der vorliegenden Arbeit identifizierten die Northern Blot-Analysen die Induktion des putativen Hrmt1l2 während der Entwicklung der Herzhypertrophie bei der SHR im Vergleich zur WKY. Die Suche nach bekannten QTLs in der Region der Hrmt1l2 des Rattengenoms identifizierte 4 QTLs (www.ratmap.org):

- QTL 16 für Herzgewicht, Kreuzung von Dahl Salz-sensitiven Ratten mit SHR, assoziiert mit erhöhtem Blutdruck und Herzgewicht (Garrett et al., 2003)
- QTL 96 für Blutdruck, Kreuzung von Sabra Bluthochdruck-anfällige Ratten mit Sabra Bluthochdruck-resistenten Ratten, assoziiert mit erhöhtem Blutdruck (Yagil et al., 1998)
- QTL 171 für Blutdruck, Kreuzung von Brown Norway Ratten mit Dahl Salz-sensitiven Ratten, assoziiert mit erhöhtem Blutdruck (Moreno et al., 2003)
- QTL 154 für Blutdruck, gefunden durch Kreuzung von SHRSP/IzmxWKY/Izm mit SHRSP/Izm Ratten, assoziiert mit erniedrigtem Blutdruck (Kato et al., 2003)

4.5.8 Suppressor of cytokine signaling 6 (Socs6)

Das cDNA-Subtraktionsscreening von SHR-12 nach SHR-26 resultierte unter anderem auch in den Klonen 12-1 und 15, die eine 100 %-ige Homologie zum vorausgesagten Gen Socs6 der Ratte, eine 96 %-ige Homologie zum Socs6 der Maus und eine 92 %-ige Homologie zum humanen SOCS6 aufweisen. Das SOCS6-Gen liegt bei Mensch, Maus und Ratte auf Chromosom 18. Das entsprechende Protein enthält eine SH2-Domäne und
eine CIS-homologe Domäne und gehört deshalb zur Familie der Cytokin-induzierten STAT-Inhibitoren (CIS, cytokin-inducible SH2 protein; STAT, signal transducer and activator of transcription), die auch als Supressoren des Cytokin-Signalwegs (SOCS) bezeichnet werden. Für das Socs6-Protein wird eine Funktion als E3-Ubiquitin-Ligase vermutet, die ihre Zielproteine an seine SH2-Domäne bindet und sie so einer Ubiquitinierung und proteasomalen Degradation zuführt (Krebs et al., 2002).

In der vorliegenden Arbeit zeigten Northern Blot-Analysen eine Erhöhung der Expression des putativen Socs6 in der SHR während der Herzhypertrophie-Entwicklung. Li und Kollegen fanden in Socs6 überexprimierenden Mäusen einen schnellen Anstieg der Socs6-mRNA, der durch Insulin bedingt war (Li et al., 2004). Darüber hinaus konnten sie zeigen, dass Socs6 eine Rolle bei der Insulin-Signalübertragung spielen könnte. Die frühen adaptiven Veränderungen bei der Hypertrophie schließen eine erhöhte Abhängigkeit von Glukose für den Energiemetabolismus mit ein (Frieben et al., 1999). Jedoch ist die Glukoseaufnahme im späten Stadium der Hypertrophie erniedrigt, wenn ventrikuläre Dilatation und Herzstörungen bereits ausgeprägt sind.

4.5.9 Citrate lyase beta like (Clybl)

Die cDNA-Subtraktion von SHR-12 nach SHR-26 resultierte auch im Klon 90, der folgende Sequenzhomologien aufweist: 98 % zum vorausgesagten Clybl der Ratte auf Chromosom 15q25; 94 % zum Clybl der Maus auf Chromosom 14E5; 84 % zum humanen CLYBL auf Chromosom 13q32.3. Die Northern Blot-Analyse ergab eine Induktion der transkriptionellen Expression des putativen Clybl während der Entwicklung einer Herzhypertrophie bei der SHR im Vergleich zur WKY.

Beim Clybl handelt es sich um ein relativ neues und bei Eukaryonten wenig bekanntes Gen, das Ähnlichkeit mit einem Enzym der anaeroben Citrat-Fermentation aufweist und von dem nur in einigen Bakterien berichtet wurde (Morikawa et al., 2001). Das Gen

4.5.10 Monoglyceride lipase (Mgll)

Die Northern Blot-Analyse von Klon 28 identifizierte eine Induktion des Transkripts während der Herzhypertrophie-Entwicklung von SHR-12 nach SHR-26 im Vergleich zur WKY. Da anzunehmen ist, dass das 3,5 kb große Transkript im Northern Blot dem Klon 28-1 zuzuordnen ist, wäre die Beteiligung des Mgll-Gens an der Hypertrophierung des Herzens in der SHR durchaus vorstellbar. Jedoch gibt es dazu in der aktuellen Literatur keine Hinweise, die diese Idee unterstützen würden.
Zusammenfassung der Diskussion

![Diagramm 4.4: Schematische Zusammenfassung der real-time RT-PCR-Ergebnisse von vier differenziell exprimierten Genen in der Entwicklung der Herzhypertrophie von SHR-12 nach SHR-26. Dargestellt sind die relativen Genexpressionen als Differenz zur WKY-04-Kontrolle.](image)

Die Expression der übrigen, bisher nur mittels Northern-Analysen untersuchten Gene, die in der vorliegenden Arbeit als differentiell exprimiert identifiziert wurden, sollten durch quantitative Expressionsanalysen bezüglich dieses Status’ verifiziert werden. Durch die Untersuchung der Kandidatengene an menschlichen Proben könnte deren Beteiligung an der Entstehung der kardialen Hypertrophie beim Menschen überprüft werden.
5 Zusammenfassung

6 Literaturverzeichnis

Cx43 expression during myocardial adaptation to acute and chronic volume overloading. *Histol Histopathol* **18**: 359-69.

chromosome 8 that exerts major effects on blood pressure and cardiac mass in the spontaneously hypertensive rat. *J Clin Invest* **99**: 577-81.

7 Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>βME</td>
<td>β-Mercaptoethanol</td>
</tr>
<tr>
<td>ºC</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>µg</td>
<td>Mikrogramm</td>
</tr>
<tr>
<td>A2-Polymerase</td>
<td>Advantage 2 Polymerase-Mix (50× Stammlösung)</td>
</tr>
<tr>
<td>abs</td>
<td>absolut</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>cDNA</td>
<td>komplementäre DNA</td>
</tr>
<tr>
<td>Ci</td>
<td>Curie</td>
</tr>
<tr>
<td>cM</td>
<td>Centi-Morgan</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>dATP</td>
<td>Desoxyadenosintriphosphat</td>
</tr>
<tr>
<td>dCTP</td>
<td>Desoxycytidintriphosphat</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>Aqua bidest</td>
</tr>
<tr>
<td>DEPC</td>
<td>Diethylpyrocarbonat</td>
</tr>
<tr>
<td>DGC</td>
<td>Dystrophin-Glycoprotein-Komplex</td>
</tr>
<tr>
<td>dGTP</td>
<td>Desoxyguanosintriphosphat</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>DNase</td>
<td>Desoxyribonuklease</td>
</tr>
<tr>
<td>dNTP</td>
<td>2’-Desoxynucleosid-5’-triphosphat</td>
</tr>
<tr>
<td>ds</td>
<td>doppelsträngig</td>
</tr>
<tr>
<td>dTTP</td>
<td>Desoxythymidintriphosphat</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylendiamintetraessigsäure</td>
</tr>
<tr>
<td>EGF</td>
<td>epidermal growth factor, epidermaler Wachstumsfaktor</td>
</tr>
<tr>
<td>EKG</td>
<td>Elektrokardiogramm</td>
</tr>
<tr>
<td>EST</td>
<td>expressed sequence tagged site</td>
</tr>
<tr>
<td>et al.</td>
<td>et alii, und andere</td>
</tr>
<tr>
<td>EtBr</td>
<td>Ethidiumbromid</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-β-D-thiogalactopyranosid</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobasen</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>LB-Medium</td>
<td>Luria-Bertani-Medium</td>
</tr>
<tr>
<td>LGMD</td>
<td>autosomal-rezessive Muskeldystrophie (Gliedergürtel-Dystrophie)</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>Mb</td>
<td>Megabasen</td>
</tr>
<tr>
<td>mg</td>
<td>Milligramm</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>ml</td>
<td>Milliliter</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>mRNA</td>
<td>Boten-Ribonukleinsäure</td>
</tr>
<tr>
<td>NGF</td>
<td>Nerven-Wachstumsfaktor</td>
</tr>
<tr>
<td>NH₄Ac</td>
<td>Ammoniumacetat</td>
</tr>
<tr>
<td>OD</td>
<td>Optische Dichte</td>
</tr>
<tr>
<td>p.c.</td>
<td>post coitum; nach der Befruchtung</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>p.n.</td>
<td>postnatal; nach der Geburt</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamidgel-Elektrophorese</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase-Ketten-Reaktion</td>
</tr>
<tr>
<td>pH</td>
<td>pH-Wert</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
</tr>
<tr>
<td>RNase</td>
<td>Ribonuklease</td>
</tr>
<tr>
<td>rpm</td>
<td>rounds per minute</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>s</td>
<td>Sekunde</td>
</tr>
<tr>
<td>SDS</td>
<td>Natriumdodecylsulfat</td>
</tr>
<tr>
<td>SHR-x</td>
<td>Spontan Hypertensive Ratte im Alter von x Wochen</td>
</tr>
<tr>
<td>ss</td>
<td>einzelsträngig</td>
</tr>
<tr>
<td>SSC</td>
<td>Standardzitronat</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris-hydroxymethyl-aminomethan</td>
</tr>
<tr>
<td>tRNA</td>
<td>Transport-Ribonukleinsäure</td>
</tr>
<tr>
<td>U</td>
<td>unit, Einheit</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolettes Licht</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>v/v</td>
<td>Volumen pro Volumen</td>
</tr>
<tr>
<td>Vol.</td>
<td>Volumen</td>
</tr>
<tr>
<td>w/v</td>
<td>Gewicht pro Volumen</td>
</tr>
<tr>
<td>WKY-x</td>
<td>Wistar-Kyoto-Ratte im Alter von x Wochen</td>
</tr>
<tr>
<td>X-Gal</td>
<td>5-Brom-4-Chlor-3-Indolyl-ß-Galactosid</td>
</tr>
</tbody>
</table>
Erklärung

Hiermit erkläre ich, Torsten Hahn, die vorliegende Arbeit selbständig und nur unter Verwendung der angegebenen Quellen und Hilfsmittel angefertigt zu haben.

Ich erkläre außerdem, diese Dissertation keiner anderen Einrichtung vorgelegt und mich nicht früher um den Doktorgrad beworben zu haben.

Torsten Hahn
Danksagung

Ich danke Herrn Prof. Dr. I. Hansmann für seine Betreuung und die Möglichkeit, am Institut für Humangenetik meine Doktorarbeit anfertigen zu können.

Herrn Dr. M. Schlicker danke ich für das interessante Projekt und die Einarbeitung in die molekularbiologischen Methoden.

Bei Herrn Dr. D. Schlote möchte ich mich dafür bedanken, dass er immer als wissensschaftlicher und computertechnischer Ansprechpartner hilfreich zur Verfügung stand.

Im Zusammenhang mit den real-time PCR-Experimenten bedanke ich mich bei Frau Dr. A. Kehlen für die fachliche Hilfe u. Unterstützung bei der Etablierung der Methode.

Mein herzlichster Dank gilt meiner Familie, die immer für mich da ist. Insbesondere danke ich meinen Eltern und meiner Frau Maria für ihre finanzielle und moralische Unterstützung, die diese Arbeit erst ermöglicht hat.