3. Originalarbeiten
Activation of PPARα lowers synthesis and concentration of cholesterol by reduction of nuclear SREBP-2

Bettina König*, Alexander Koch, Julia Spielmann, Christian Hilgenfeld, Gabriele I. Stangl, Klaus Eder

Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, D-06108 Halle (Saale), Germany

ARTICLE INFO

Article history:
Received 20 September 2006
Accepted 26 October 2006

Keywords:
Peroxisome proliferator-activated receptor (PPAR)-α
Cholesterol
Sterol regulatory element binding protein (SREBP)-2
Insulin-induced gene (Insig)
HMG-CoA reductase
LDL receptor

ABSTRACT

To elucidate the mechanisms underlying the cholesterol lowering effects of PPARα agonists we investigated key regulators of cholesterol synthesis and uptake in rats and in the rat hepatoma cell line Fao after treatment with the PPARα agonists clofibrate and WY 14,643, respectively. In rat liver as well as in Fao cells, PPARα activation led to a decrease of transcriptionally active nuclear SREBP-2. mRNA concentrations of the key regulators of SREBP processing, Insig-1 in rat liver and Insig-1 and Insig-2a in Fao cells, were increased upon PPARα activation. Thus we suggest, that the observed reduction of the amount of nuclear SREBP-2 was due to an inhibition of the processing of the precursor protein. Both, in rat liver and in Fao cells, mRNA concentrations of the SREBP-2 target genes HMG-CoA reductase (EC1.1.1.34) and LDL receptor were reduced after treatment with the PPARα agonists. Furthermore, treatment of Fao cells with WY 14,643 reduced cholesterol synthesis. As a result, the amount of total cholesterol in liver, plasma and lipoproteins of clofibrate treated rats and in WY 14,643 treated Fao cells was decreased compared to control animals and cells, respectively. In conclusion, we could show a novel link between PPARα and cholesterol metabolism by demonstrating that PPARα activation lowers cholesterol concentration by reducing the abundance of nuclear SREBP-2.

2006 Published by Elsevier Inc.

1. Introduction

In animal cells, lipid homeostasis is maintained by a feedback mechanism that regulates the transcription of genes involved in lipid synthesis and uptake. Transcription factors that regulate the coordinated expression of these genes are the family of sterol regulatory element binding proteins (SREBPs) [1]. Three isoforms of SREBP are known in mammals, SREBP-1a, SREBP-1c and SREBP-2. While SREBP-1c, the predominant isoform in adult liver, preferentially activates genes required for fatty acid synthesis and their incorporation into triacylglycerols and phospholipids, SREBP-2 preferentially activates the low density lipoprotein (LDL) receptor gene and various genes required for cholesterol synthesis such as 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase (EC1.1.1.34) [2]. SREBP-1a is an activator of both, the cholesterol and fatty acid biosynthetic pathway, but it is present in much lower amounts in liver than the other two forms [3]. SREBPs are
synthesized as 120-kDa integral membrane proteins of the endoplasmic reticulum and form a complex with SREBP cleavage activating protein (SCAP). When sterol concentrations in cells are high, the SCAP/SREBP complex is retained in the ER. When cells are depleted of sterols, SCAP escorts SREBP to the Golgi for proteolytic processing. In the Golgi, sequential cleavages occur, releasing the mature N-terminal domain of SREBP that then translocates to the nucleus and activates transcription of sterol regulatory element-containing genes [2,4,5].

Retention of the SCAP/SREBP complex in the ER is mediated by sterol-dependent binding of the complex to one of two ER retention proteins designated insulin-induced gene (Insig)-1 and -2 [6,7]. Insig-1 and Insig-2 are integral membrane proteins that are expressed in most tissues with especially high expression in the liver [6,7]. Insig-1 differs from Insig-2 in its requirement of nuclear SREBPs for its expression providing a feedback mechanism for lipid homeostasis [7]. Furthermore, Insig-1 but not Insig-2 is able to cause ER retention of the SCAP/SREBP complex in the absence of sterols at high expression levels [7]. Unlike Insig-1, Insig-2a, the liver-specific isoform of Insig-2, is suppressed by insulin and induced by fasting [8]. Recently it has been shown that activation of the peroxisome proliferator-activated receptor (PPAR)γ by rosiglitazone induced the expression of Insig-1 in white adipose tissue via a PPAR response element in the promoter region of Insig-1 [9].

PPAR are transcription factors belonging to the superfamily of nuclear receptors that can be activated by fatty acids and their metabolic derivatives. They are implicated in the regulation of lipid and lipoprotein metabolism, glucose homeostasis, cellular differentiation, cancer development as well as in the control of the inflammatory response [reviewed in 10–12]. There are three PPAR isotypes, PPARα, PPARγ/δ and PPARγ, all of which regulate the expression of target genes by binding to DNA sequence elements as heterodimers with the 9-cis retinoic acid receptor after activation [13]. PPARα is highly expressed in tissues with high fatty acid oxidation, in which it controls a comprehensive set of genes that regulate most aspects of lipid catabolism [14]. Furthermore, the action of fibrates, a class of hypolipidemic drugs, on lipid metabolism is mediated by the activation of PPARα [15].

Both, natural and synthetic ligands of PPARα are known to lower the plasma and liver cholesterol concentrations in man and animals [16–19]. Mice in which the PPARα gene has been disrupted (PPARα-null (KO) mice) are hypercholesterolemic [20] and show a dysregulation in the hepatic expression of HMG-CoA reductase during the diurnal variation of cholesterologenesis [21]. Also other studies suggested an involvement of PPARα in the regulation of cholesterol synthesis; however, both, stimulatory and inhibitory effects of fibrates on hepatic HMG-CoA reductase and cholesterol synthesis in rats have been reported depending on fibrates and model used [22–24].

The objective of the present study was to further evaluate the mechanisms underlying the cholesterol lowering effects of PPARα activation in rat liver. Therefore we treated rats with the PPARα agonist clofibrate. Based on their central role in the regulation of the cholesterol metabolism, we focused on effects of PPARα activation on the gene expression and nuclear concentration of SREBP-2 and on the gene expression of Insig-1 and Insig-2a as key regulators of SREBP-2 activity. Furthermore, we analyzed the expression of SREBP-2 target genes HMG-CoA reductase and LDL receptor. To verify the obtained results, we used the Fao cell model which is commonly used to study the effects of PPARα agonists on hepatic lipid metabolism in vitro [25–27]. We examined the influence of WY 14,643, another PPARα agonist with high specificity [28], on Insigs, SREBP-2 and its target genes and on cholesterol synthesis in Fao cells.

2. Material and methods

2.1. Materials

WY 14,643, DMSO, MTT (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide; Thiazol blue), TRIZOL™ reagent, SYBR® Green I, protease inhibitor mix and the anti-rabbit IgG peroxidase conjugate antibody were purchased from Sigma-Aldrich (Steinheim, Germany). Ethyl 2-(4-chlorophenoxy)-2-methylpropionate (clofibrate) was obtained from Fluka Chemie GmbH (Buchs, Switzerland). Rat hepatoma Fao cell line was purchased from ECACC (Salisbury, UK). F-12 Nutrient Mixture (Ham), gentamycin and fetal calf serum (FCS) were obtained from Invitrogen (Karlsruhe, Germany). Reverse transcriptase was supplied by MBI Fermentas (St. Leon-Rot, Germany), and Taq polymerase by Promega (Mannheim, Germany). Bicinchoninic acid assay reagent was a product of Interchim (Montfuocon, France). The nitrocellulose blotting membrane was from Pall (Pensacola, FL, USA), and the ECL-reagent kit from GE Healthcare (München, Germany). The anti-SREBP-2 antibody (rabbit polyclonal IgG) was from Santa Cruz Biotechnology (Santa Cruz, CA, USA) and the anti-β-Actin antibody (rabbit polyclonal IgG) was purchased from Abcam Ltd. (Cambridge, UK). Autoradiography film for Western blot analysis (Agfa Cronex) was from Roentgen Bender (Baden-Baden, Germany). Male Sprague–Dawley rats were supplied by Charles River (Sulzfeld, Germany). Radioactive [1,2-14C]acetate (specific activity 110 μCi/mmol) was from Hartmann Analytic (Braunschweig, Germany), and TLC sheets (Si 60 aluminium sheets) were from VWR International (Darmstadt, Germany).

2.2. Cell culture

Fao rat hepatoma cells were cultured in Ham-F12 medium supplemented with 10% FCS and 0.05 mg/ml gentamycin. Cells were maintained at 37 °C in a humidified atmosphere of 95% air and 5% CO2. For experiments, Fao cells were seeded in 24- or 6-well culture plates at a density of 2.1 × 105 and 1.05 × 106 cells, respectively, per well and used prior reaching confluence (usually 3 days after seeding). Experiments were carried out in low-serum medium (0.5% FCS) as commonly used for PPARα activation studies with several agonists since PPARα activation is more pronounced under these conditions [29–31]. Furthermore, expression of SREBP-2 target genes is upregulated compared to full-serum medium [32]. The cells were preincubated with low-serum medium for 16 h and then stimulated for 6 and 24 h with WY 14,643. WY 14,643 was
added to the low-serum medium from a stock solution in DMSO. Final DMSO concentration did not exceed 0.1% (v/v).

Cells treated with the appropriate vehicle concentration were used as a control. Cell viability of Fao cells was not reduced by 24 h incubation with WY 14,643 up to a concentration of 100 μM as demonstrated by the MTT assay ([33]; data not shown).

2.3. Animals, diets and sample collection

Male Sprague–Dawley rats, with an average initial body weight of 366 g (±28; S.D.), were randomly assigned to two groups (n = 8) and kept individually in Macrolon cages in a room controlled for temperature (22 ± 2 °C), relative humidity (50–60%) and light (12 h light/dark cycle). All experimental procedures described followed established guidelines for the care and handling of laboratory animals and were approved by the council of Saxony-Anhalt. The animals were treated with the council of Saxony-Anhalt. The animals were treated with

2.4. RT-PCR analysis

Total RNA was isolated from Fao cells after the incubation in 24-well plates and rat livers, respectively, by TRIZOL™ reagent according to the manufacturer’s protocol. cDNA synthesis was carried out as described [31]. The mRNA expression of genes was measured by real-time detection PCR using SYBR® Green I. Real-time detection PCR was performed with 1.25 U Taq DNA polymerase, 500 μM dNTPs and 26.7 pmol of the specific primers (Operon Biotechnologies, Cologne, Germany; Table 1). For determination of mRNA concentration a threshold cycle (Ct) was obtained from each amplification curve using the software RotorGene 4.6 (Corbett Research, Australia). Calculation of the relative mRNA concentration was made using the ΔΔCt method as previously described [35]. The housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC1.2.1.12) was used for normalization.

2.5. Immunoblot analysis

Whole cell extracts of Fao cells were prepared by lysis in 20 mM Tris, 150 mM NaCl, 0.1% Triton X-100, 1% protease inhibitor mix, pH 7.5, after the incubation in six-well-plates. The protein content was determined by the bicinchoninic acid assay. Nuclear extracts of rat livers were prepared from fresh tissue samples (150 mg) according to Woo et al. [36] and equal amounts of proteins were pooled from four rats per treatment group. Thirty to fifty micrograms of Fao cell proteins and 100 μg of pooled rat liver nuclear extracts, respectively, were separated on 10% sodium dodecylsulfate acrylamide gel electrophoresis according to the method of Laemmli et al. [37] and electrotransferred to a nitrocellulose membrane. After blocking in 50 mM Tris, 150 mM NaCl, 0.2% Tween-20, pH 7.5, containing 3% nonfat dry milk, bands corresponding to nuclear SREBP-2 (for Fao cell and rat liver samples) and β-Actin (for Fao cell samples, as a loading control) were visualized with

Table 1 – Characteristics of the specific primers used for RT-PCR analysis

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward and reverse primers</th>
<th>Annealing temperature</th>
<th>NCBI GenBank</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACO</td>
<td>5’- CTTTCTGGCAGCTTGGTTCC 3’</td>
<td>60 °C</td>
<td>NM017340</td>
</tr>
<tr>
<td>G591Y</td>
<td>5’- GCCGTGGCTACCCGCTGGTA 3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyp4A1</td>
<td>5’- CAGAATGGAGATTGGGAAGC 3’</td>
<td>65 °C</td>
<td>NM175837</td>
</tr>
<tr>
<td>G591Y</td>
<td>5’- TGAGAAGGGCGAGGATGAGG 3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAPDH</td>
<td>5’- GCATGCCCTGCTGCTGCTC 3’</td>
<td>60 °C</td>
<td>BC059110</td>
</tr>
<tr>
<td>G591Y</td>
<td>5’- GGGTGGTCCAGGGTTCTCTACTC 3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMG-CoA reductase</td>
<td>5’- AAGGGCGGCGTAAAAGAACATTCTC 3’</td>
<td>60 °C</td>
<td>BC064654</td>
</tr>
<tr>
<td>G591Y</td>
<td>5’- ATACGGCCAAGAGAAAGCATAGT 3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insig-1</td>
<td>5’- ATGGGCTGGTCTGGCTGCTG 3’</td>
<td>62 °C</td>
<td>NM022392</td>
</tr>
<tr>
<td>G591Y</td>
<td>5’- GCGGTCCTAGGAGGAGGTGCTG 3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insig-2a</td>
<td>5’- GACGGATGGTGTGAGGATCTTCTC 3’</td>
<td>60 °C</td>
<td>AM65086</td>
</tr>
<tr>
<td>G591Y</td>
<td>5’- TGGACCTGAAGCAGACAAATGGC 3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL receptor</td>
<td>5’- GAACTCGGCGGCGGCAAGACAC 3’</td>
<td>65 °C</td>
<td>NM175762</td>
</tr>
<tr>
<td>G591Y</td>
<td>5’- AAGCCGGCGCACTGACCACTCTCA 3’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SREBP-2</td>
<td>5’- ATCCCCCACAAGCTACGGCTGCTC 3’</td>
<td>65 °C</td>
<td>BC101902</td>
</tr>
<tr>
<td>G591Y</td>
<td>5’- GCCCGCATCCTGCGACTG 3’</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

enhanced chemiluminescence reagents and exposed to autoradiography film. Films were analyzed with the Gel-Pro Analyzer software (Intas, Upland, CA, USA).

2.6. Determination of triacylglycerol and cholesterol concentrations in Fao cells, liver, plasma and lipoproteins

Lipid extraction from Fao cells after 24 h of incubation with 100 μM of WY 14,643 or vehicle alone and measurement of cellular and secreted triacylglycerols and cellular cholesterol was carried out as described [31]. Rat liver lipids were extracted using a mixture of n-hexane and isopropanol (3:2, v/v) [38]. Aliquots of the lipid extracts were dried and dissolved in a small volume of Triton X-100 [39]. Plasma lipoproteins were separated by stepwise ultracentrifugation (900,000 × g, 1.5 h, 4 °C; very low density lipoproteins (VLDL) + chylomicrons: δ < 1.006 g/ml; LDL: 1.006 < δ < 1.063 g/ml; high density lipoproteins (HDL): δ > 1.063 g/ml) using a Micro-Ultracentrifuge (Sorvall Products, Bad Homburg, Germany).

Concentrations of total cholesterol and triacylglycerols were determined using an enzymatic reagent kit (Ecoline S+, Merck, Darmstadt, Germany).

2.7. Determination of cholesterol synthesis

After a pre-incubation of 22 h at 37 °C, 5% CO2 with the different concentrations of WY 14,643, 0.2 μCi [1,2-14C]acetate (specific activity 110 mCi/mmol) were added in order to measure the newly synthesized cholesterol [40,41]. Cells were further incubated for 2 h at 37 °C, 5% CO2. After incubation the cells were washed twice with cold PBS. The lipids were extracted twice with a mixture of hexane and isopropanol (3:2, v/v) [38]. After removing the solvents in a small volume of Triton X-100 [39]. Plasma lipoproteins treated with clofibrate compared to control rats (P < 0.001; Table 2). The asterisks indicate significant differences from control animals (* P < 0.05; ** P < 0.01). The statistical analysis was done using one-way ANOVA using the Minitab Statistical Software (Minitab, State College, PA, USA). If the F value was significant (P < 0.05), differences with P < 0.05 were considered to be significant.

3. Results

3.1. Activation of PPARα in rat liver and Fao cells

We treated male Sprague–Dawley rats with the PPARα agonist clofibrate for 4 days. Animals were killed 4 h after the last dose of clofibrate and typical characteristics of PPARα activation were analyzed. Treatment with clofibrate led to an increase in the relative liver masses of the rats of about 22% compared to control animals (P < 0.001; Table 2). Rats treated with the PPARα agonist had higher mRNA concentrations of the PPARα downstream genes acyl-CoA oxidase (ACO; EC1.3.3.6) and cytochrome P450 (Cyp) 4A1 (EC1.14.15.3) of about 9- and 18-fold, respectively, in their livers compared to control animals (P < 0.001; Fig. 1). Furthermore, the triacylglycerol concentrations of the livers of rats treated with clofibrate were about 40% lower than those of control rats (P < 0.05; Table 2). The concentrations of triacylglycerols in plasma and VLDL + chylomicrons were also reduced about 59 and 81%, respectively, in clofibrate treated rats compared to control animals (P < 0.001).

Next, we incubated rat hepatoma Fao cells with increasing amounts of the PPARα agonist WY 14,643 for 6 and 24 h. Incubation of Fao cells with WY 14,643 for 6 and 24 h, respectively, led to a significant increase of the mRNA concentration of ACO and Cyp4A1 (P < 0.05; Fig. 2). Increase of ACO mRNA concentration by incubation of Fao cells with WY 14,643 was more pronounced after 6 h compared to 24 h treatment, whereas Cyp4A1 mRNA increased more after 24 h than after 6 h treatment, compared to control cells. Furthermore, we analyzed the influence of the PPARα agonist on the concentration of cellular and secreted triacylglycerols in Fao cells (Table 2). The asterisks indicate significant differences from control animals (* P < 0.05; ** P < 0.01). The statistical analysis was done using one-way ANOVA using the Minitab Statistical Software (Minitab, State College, PA, USA). If the F value was significant (P < 0.05), differences with P < 0.05 were considered to be significant.

Table 2 – Relative liver mass and triacylglycerol and cholesterol concentrations in liver, plasma and lipoproteins of rats treated with clofibrate compared to control rats

<table>
<thead>
<tr>
<th>Relative liver mass (g/kg body mass)</th>
<th>Control</th>
<th>Clofibrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triacylglycerols</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver (μmol/g)</td>
<td>32.43 ± 7.26</td>
<td>19.75 ± 4.85*</td>
</tr>
<tr>
<td>Plasma (mM)</td>
<td>0.92 ± 0.19</td>
<td>0.38 ± 0.13*</td>
</tr>
<tr>
<td>VLDL + chylomicrons (mM)</td>
<td>0.74 ± 0.17</td>
<td>0.14 ± 0.03*</td>
</tr>
<tr>
<td>Total cholesterol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liver (μmol/g)</td>
<td>14.92 ± 2.50</td>
<td>12.85 ± 3.54*</td>
</tr>
<tr>
<td>Plasma (mM)</td>
<td>1.60 ± 0.34</td>
<td>0.49 ± 0.11*</td>
</tr>
<tr>
<td>VLDL + chylomicrons (mM)</td>
<td>0.09 ± 0.03</td>
<td>0.01 ± 0.00*</td>
</tr>
<tr>
<td>LDL (mM)</td>
<td>0.41 ± 0.12</td>
<td>0.12 ± 0.02*</td>
</tr>
<tr>
<td>HDL (mM)</td>
<td>0.92 ± 0.20</td>
<td>0.20 ± 0.05**</td>
</tr>
</tbody>
</table>

Values are means ± S.D. (n = 8). The asterisks indicate significant differences from control animals (* P < 0.05; ** P < 0.001).
cells. The concentrations of cellular triacylglycerols of Fao cells incubated with WY 14,643 for 24 h was about 13% lower compared to control cells treated with vehicle alone (control: 41.3 ± 0.9 nmol mg cell protein⁻¹, 100 μM WY 14,643: 35.8 ± 4.4 nmol mg cell protein⁻¹; values are means ± S.D. (n = 3); P < 0.05). The amount of secreted triacylglycerols in VLDL was measured in the culture medium after incubation. Cells incubated with WY 14,643 for 24 h secreted about 24% less triacylglycerols than control cells (control: 411 ± 30 nmol mg cell protein⁻¹ 24 h⁻¹, 100 μM WY 14,643: 313 ± 41 nmol mg cell protein⁻¹ 24 h⁻¹; values are means ± S.D. (n = 3); P < 0.05).

3.2. Influence of PPARα agonists on Insig-1, Insig-2a and SREBP-2 in rat liver and Fao cells

To study the influence of PPARα activation on key regulators of cholesterol synthesis and uptake, we analyzed the mRNA concentrations of Insig-1, Insig-2a and SREBP-2. Furthermore, we determined the amount of the nuclear form of SREBP-2 by Western-blotting. In rats treated with clofibrate, the relative mRNA concentration of Insig-1 in the liver was about 80% higher than in control animals (P < 0.05; Fig. 3A), whereas the mRNA concentration of Insig-2a, the liver specific transcript of the Insig-2 gene, was about 80% lower in the liver of clofibrate treated rats than in control rats (P < 0.001; Fig. 3A). The concentration of SREBP-2 mRNA in the livers of rats treated with the PPARα agonist was about 40% lower than that of control rats (P < 0.05; Fig. 3A). To analyze the amount of nuclear SREBP-2, we isolated the nuclear fractions of livers of the rats. The relative protein level of the mature SREBP-2 in the livers of rats treated with clofibrate was about 70% lower than in control animals (P < 0.05; Fig. 3B and C).

Treatment of Fao cells with WY 14,643 for 6 h led to a significant and concentration dependent increase of Insig-1 mRNA concentration compared to control cells, and this effect was abolished after 24 h of treatment (Fig. 4A). At the highest concentration of WY 14,643 used, Insig-1 mRNA concentration was about 80% higher than that of control cells after 6 h of incubation (P < 0.001). Likewise, incubation of Fao cells with 100 μM WY 14,643 for 6 h increased the mRNA concentration of Insig-2a about 50% compared to control cells (P < 0.05). After 24 h of incubation, Insig-2a mRNA concentration in WY 14,643 treated cells still tended to be higher (about 20%, P < 0.10) than in control cells (Fig. 4A). SREBP-2 mRNA concentration was unchanged in cells incubated with WY 14,643 for 6 h, whereas it was about 20% lower after 24 h of treatment with all WY 14,643 concentrations used compared to control cells (P < 0.05; Fig. 4A). Western blot analysis of whole Fao cell lysates revealed that the relative protein concentration of the mature SREBP-2 after treatment of Fao cells with 100 μM of WY 14,643...
for 6 h was not different from that of the control cells (Fig. 4B and C). After 24 h of treatment, mature SREBP-2 concentration was about 35% lower compared to untreated cells (P < 0.05).

3.3. Influence of PPARα agonists on the mRNA concentration of HMG-CoA reductase and LDL receptor in rat liver and Fao cells

We analyzed the effect of PPARα agonists on the expression of SREBP-2 target genes involved in cholesterol synthesis and uptake. In rats treated with clofibrate, the relative mRNA concentration of HMG-CoA reductase in the liver was about 40% lower than in control animals (P < 0.05; Fig. 5). Furthermore, treatment of rats with the PPARα agonist led to a reduction of LDL receptor mRNA concentration about 27% compared to control rats (P < 0.05; Fig. 5).

The level of HMG-CoA reductase mRNA in Fao cells after treatment with different concentrations of WY 14,643 for 6 h was not changed compared to control cells. Incubation of Fao cells with WY 14,643 for 24 h led to a reduction of HMG-CoA reductase mRNA concentration about 38, 35 and 24% at 25, 50 and 100 μM WY 14,643, respectively, compared to untreated cells (P < 0.05; Fig. 6). LDL receptor mRNA concentration was unchanged in cells incubated with WY 14,643 for 6 h compared to control cells. After 24 h treatment, LDL receptor mRNA concentration was about 30, 35 and 33% lower in Fao cells incubated with 25, 50 and 100 μM WY 14,643, respectively, than in untreated cells (P < 0.05; Fig. 6).

3.4. Effect of PPARα agonists on cholesterol concentration in liver, plasma and lipoproteins of rats and on cholesterol concentration and synthesis in Fao cells

PPARα activation in rats by clofibrate reduced the amount of total cholesterol in rat liver about 14% compared to control rats (P < 0.05; Table 2). Also, the cholesterol concentration of the plasma of clofibrate treated rats was about 69% lower than that of untreated animals (P < 0.001). The amount of total cholesterol in VLDL + chylomicrons, LDL and HDL was decreased about 89, 70 and 78%, respectively, by treatment of rats with the PPARα agonist (P < 0.001; Table 2).

In Fao cells treated with 100 μM WY 14,643 for 24 h, the concentration of cellular cholesterol was about 16% lower compared to control cells incubated with vehicle alone [control: 21.9 ± 1.5 nmol·mg cell protein−1, 100 μM WY 14,643: 18.4 ± 3.1 nmol·mg cell protein−1; values are means ± S.D. (n = 3); P < 0.05]. Furthermore, cholesterol synthesis was significantly lower about 27, 25 and 44% in Fao cells incubated with 25, 50 and 100 μM WY 14,643, respectively, for 24 h compared to control cells (P < 0.05; Fig. 7).

4. Discussion

The cholesterol concentration in mammalian cells is tightly controlled by a feedback mechanism involving Insigs, SCAP and SREBPs [43]. The aim of this study was to elucidate the mechanism by which PPARα ligands influence cholesterol synthesis and uptake in rat liver. For that, we first examined the effect of clofibrate treatment on the cholesterol metabolism of rats. Clofibrate is known to be a hypolipidemic drug and its plasma triacylglycerol and cholesterol lowering effects are well reported [18]. Treatment of rats with clofibrate for 4 days led to a strong PPARα activation as indicated by an upregulation of the PPARα target genes ACO and Cyp4A1 and increased relative liver weights which are due to the induced peroxisome proliferation [44,45]. Both, ACO and Cyp4A1 are typical PPARα downstream genes and are considered as marker genes for PPARα activation [46,47]. The increased expression of these genes involved in fatty acid β-oxidation is one of the mechanisms underlying the hypotriglyceridemic effect upon PPARα activation. Others are increased hydrolysis of plasma triglycerides, stimulation of cellular fatty acid uptake, decreased synthesis of fatty acids and triglycerides and
decreased production of VLDL [15]. Indeed, rats treated with the PPARα agonist had markedly reduced triacylglycerol levels in liver, plasma and VLDL + chylomicrons. Second, to verify the results obtained in the rat study we used an in vitro model and the PPARα agonist WY 14,643. Compared to clofibrate, WY 14,643 is a more potent PPARα agonist and exhibits a more strict PPAR subtype specificity [28,48] allowing us to assign the observed effects actually to an activation of PPARα. Incubation of the Fao cells with WY 14,643 for 6 and 24 h led to a strong activation of PPARα as indicated by several fold increased mRNA concentrations of ACO and Cyp4A1. Furthermore, treatment of cells with WY 14,643 largely reduced the concentration of intracellular and secreted triacylglycerols.

Next, we analyzed the effect of PPARα activation on key regulators of cholesterol synthesis and uptake. Both, in the liver of rats treated with clofibrate and in Fao cells treated with WY 14,643 for 24 h, the amount of the transcriptionally active form of SREBP-2 in the nucleus was reduced compared to
control animals and cells, respectively. This can be due on the one hand to a reduced transcription of the gene or reduced stability of the transcript resulting in lowered mRNA concentrations and reduced availability of the SREBP-2 precursor protein. However, also a reduced amount of nuclear SREBP-2 can lead to decreased mRNA concentrations of the SREBP-2 gene since SREBP-2 contains a sterol regulatory element in its enhancer/promoter region and the nuclear form can activate its own gene in an autoregulatory loop [49]. In the liver of clofibrate treated rats, the mRNA concentration of SREBP-2 was reduced compared to control rats. In Fao cells, after 6 h of incubation with WY 14,643 the mRNA concentration of SREBP-2 was unchanged, whereas it was significantly reduced after 24 h of incubation compared to control cells. This observation in Fao cells indicates, that a reduction of SREBP-2 mRNA did not precede the decrease of its nuclear form and thus there may be another reason for the observed reduction of nuclear SREBP-2 upon PPARα activation.

The integral membrane proteins Insig-1 and -2 have been previously identified as modulators of SREBP activity [6,7]. They anchor the SCAP/SREBP complex in the endoplasmic reticulum in the presence of sterols. Overexpression of Insig-1 in the liver of transgenic mice inhibited processing of SREBPs [50]. Inversely, reduction of both Insig mRNAs by RNA interference or by mutational inactivation led to an increase in nuclear SREBPs [51–53]. We could show that in the liver of...
rats treated with clofibrate the mRNA concentration of Insig-1 was increased compared to control animals. Furthermore, incubation of Fao cells with WY 14,643 for 6 h led to a significant and dose-dependent increase of the mRNA concentrations of Insig-1 and, to a lesser extent, of Insig-2a, the liver-specific transcript of the Insig-2 gene. The induction of Insig-1 mRNA concentration in WY 14,643 treated Fao cells observed after 6 h of incubation was completely abolished after 24 h. We suggest that this is due to a decline in Insig-1 transcription caused by reduced nuclear SREBP-2. The transcription of Insig-1 requires nuclear SREBPs [7]. In contrast to Insig-1, the expression of Insig-2 is not dependent on nuclear SREBPs permitting feedback regulation of cholesterol synthesis over a wide range of sterol concentrations by the concerted action of both Insig-1 and Insig-2 [7]. The level of Insig-2a mRNA after 24 h of incubation of the Fao cells with WY 14,643 was not as high as after 6 h of incubation but tended to be still elevated over control.

Taken together these data suggest that the reduced amount of nuclear SREBP-2 upon PPARα activation in rat liver and Fao cells, respectively, may be rather due to increased expression of Insigs which retard SREBP-2 processing than to decreased transcription of the SREBP-2 gene. Recently it was demonstrated that Insig-1 is regulated by PPARγ in white adipose tissue of diabetic mice via a PPAR response element in its promoter region [9]. In Fao cells, the increase of Insig-1 and -2a mRNA concentrations was observed simultaneously with ACO and Cyp4A1 induction after short term incubation of the Fao cells with WY 14,643. Considering the existence of a PPAR response element in the Insig-1 promoter one could speculate, that the upregulation of Insig-1 and Insig-2a may be directly mediated by PPARα. Further experiments are required to prove this hypothesis.

In contrast to our results obtained with the Fao cell model, PPARα activation in rats markedly reduced the mRNA concentration of Insig-2a in the liver. The expression of Insig-2a, the liver-specific transcript of Insig-2, is specifically down-regulated by insulin [8]. It has been reported that activation of PPARα improved insulin sensitivity in different models of insulin resistance, probably by reducing lipid accumulation in tissues due to increased fatty acid oxidation and by down-regulation of a gene involved in insulin receptor signalling in hepatocytes [54–57]. Thus we suggest that improvement of insulin sensitivity in the liver of clofibrate treated rats may account for the down-regulation of Insig-2a. Nevertheless, the reduced expression of Insig-2a did not interfere with the inhibition of SREBP-2 processing in clofibrate treated rats, indicating that Insig-1 is more important than Insig-2a in the regulation of SREBP-2 activity. Yabe et al. [8] discussed a special role of Insig-2a in processing of SREBP-1c in the liver of mice allowing the SREBP-1c to exit the ER to stimulate fatty acid synthesis, even at elevated hepatic cholesterol concentrations.

The reduced abundance of transcriptionally active SREBP-2 in the nucleus upon PPARα activation in the livers of clofibrate treated rats and in Fao cells after 24 h of incubation with WY 14,643 was mirrored by lowered mRNA concentrations of two SREBP-2 target genes encoding proteins for cholesterol synthesis and uptake. In clofibrate treated rats as well as in Fao cells stimulated with WY 14,643 for 24 h, the mRNA concentrations of both, HMG-CoA reductase and LDL receptor were decreased compared to control animals and cells, respectively. Furthermore, cholesterol synthesis rate in Fao cells incubated with WY 14,643 for 24 h was decreased compared to control cells which is in agreement with the reduced mRNA concentration of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis, upon PPARα activation.

In clofibrate treated rats, the reduced expression of genes involved in cholesterol synthesis and uptake was reflected by decreased concentrations of total cholesterol in the liver, plasma and lipoproteins. A similar decline in serum cholesterol levels associated with decreased HMG-CoA reductase activity in liver microsomes was observed in rats fed 0.3% clofibrate in the diet for 3–7 days [58]. Also in Fao cells, reduced cholesterol synthesis and uptake resulted in a decrease of the total cholesterol concentration after 24 h of incubation with WY 14,643.

Thus, our data show for the first time that PPARα activation lowers the cholesterol concentration in rat liver, plasma and lipoproteins and in Fao cells by reducing the amount of nuclear SREBP-2 thereby decreasing cholesterol synthesis and uptake. Further, our data indicate that this reduction of nuclear SREBP-2 is mediated by increased expression of Insigs (Fig. 8).

Several reports indicated an involvement of PPARα in the regulation of cholesterol synthesis in the liver. In wild-type mice, an antiparallel relationship exists between the expression of the PPARα gene and that of HMG-CoA reductase and LDL receptor genes; in PPARα-null (KO) mice, the diurnal variation of cholesterogenic gene expression was abolished [21]. These observations are in agreement with our study that shows that PPARα activation inhibits the expression of HMG-CoA reductase and LDL receptor by reducing the amount of nuclear SREBP-2.

![Fig. 8 - Schematic diagram of the proposed pathways leading to decreased cholesterol synthesis and concentration upon PPARα activation. PPARα activation by clofibrate or WY 14,643 reduces the amount of nuclear SREBP-2, probably via an upregulation of Insigs. In turn, this leads to a decreased expression of SREBP-2 target genes HMG-CoA reductase and LDL receptor implicated in cholesterol synthesis and uptake and finally to reduced cholesterol concentrations.](image-url)
Also other studies supported our results on the mechanism underlying the cholesterol lowering effect of PPARα agonists by indicating that clofibrate inhibited HMG-CoA reductase activity and decreased cholesterol synthesis in rats and in cultured hepatocytes [22,24,58–60]. However, there are also few studies which are in contrast to our results. The PPARα agonists gemfibrozil and ciprofibrate upregulated cholesterol synthesis and HMG-CoA reductase activity or mRNA concentration in rats and in cultured hepatocytes [23,24,61]. WY 14,643 treatment of wild-type mice resulted in a decreased rate of cholesterol synthesis, whereas in PPARα-null (KO) mice cholesterol synthesis was unaffected by WY 14,643 treatment [62]. While this reduction of cholesterol synthesis by PPARα is consistent with our data, the authors found increased HMG-CoA reductase mRNA levels in wild-type mice but not PPARα-null (KO) mice treated with WY 14,643 [62]. The reasons for the conflicting results concerning the effects of PPARα agonists on cholesterol synthesis and HMG-CoA reductase are difficult to explain but may depend on experimental conditions, species and type of fibrate used. Furthermore, HMG-CoA reductase is regulated by a complex feedback mechanism including transcriptional, translational and posttranslational levels and the sterol-dependent ubiquitination and proteolytic degradation of the protein mediated by Insigs [63,64]. Thus, measurements of HMG-CoA reductase mRNA may not always reflect the actual activity of the enzyme.

In conclusion, data from the rat experiment and the in vitro study strongly suggest that PPARα activation lowers the cholesterol concentration by reducing the abundance of nuclear SREBP-2, probably via an upregulation of Insigs. This leads in turn to diminished expression of the SREBP-2 target genes HMG-CoA reductase and LDL receptor and reduced cholesterol synthesis and uptake. Thus, these date give important insights in the complex regulation of lipid homeostasis in liver cells by providing a novel link between PPARα and cholesterol metabolism. Moreover, these results may help to explain the cholesterol lowering effects of natural ligands of PPARα such as polyunsaturated fatty acids, conjugated linoleic acids and oxidized fatty acids in man and animals [16,17,65].

Acknowledgment

The authors thank F. Hirche for technical support in measurement of cholesterol synthesis.

REFERENCES

König B, Eder K. Differential action of 13-HPODE on PPAR

Thermally Oxidized Oil Increases the Expression of Insulin-Induced Genes and Inhibits Activation of Sterol Regulatory Element-Binding Protein-2 in Rat Liver\(^1,2\)

Alexander Koch, Bettina König, Julia Spielmann, Andrea Leitner, Gabriele I. Stangl, and Klaus Eder\(^*\)

Institute of Agricultural and Nutritional Sciences, Martin Luther University, D-06108 Halle (Saale), Germany

Abstract

Administration of oxidized oils to rats or pigs causes a reduction of their cholesterol concentrations in liver and plasma. The reason for this effect is unknown. We tested the hypothesis that oxidized oils lower cholesterol concentrations by inhibiting the proteolytic activation of sterol regulatory element-binding protein (SREBP)-2 in the liver and transcription of its target genes involved in cholesterol synthesis and uptake through an upregulation of gene expression of insulin-induced genes (Insig). For 6 d, 18 rats were orally administered either sunflower oil (control group) or an oxidized oil prepared by heating sunflower oil. Rats administered the oxidized oil had higher messenger RNA concentrations of acyl-CoA oxidase and cytochrome P450 4A1 in the liver than control rats \((p < 0.05)\), indicative of activation of PPAR\(\alpha\). Furthermore, rats administered the oxidized oil had higher mRNA concentrations of Insig-1 and Insig-2a, a lower concentration of the mature SREBP-2 in the nucleus, lower mRNA concentrations of the SREBP-2 target genes 3-hydroxy-3-methylglutaryl CoA reductase and LDL receptor in their livers, and a lower concentration of cholesterol in liver, plasma, VLDL, and HDL than control rats \((p < 0.05)\). In conclusion, this study shows that reduced cholesterol concentrations in liver and plasma of rats administered an oxidized oil were due to an inhibition of the activation of SREBP-2 by an upregulation of Insig, which in turn inhibited transcription of proteins involved in hepatic cholesterol synthesis and uptake. J. Nutr. 137: 2018–2023, 2007.

Introduction

Oxidized lipids as components of heated or fried foods play an important role in nutrition in industrialized countries \((1)\). Lipid peroxidation products present in oxidized oils influence animal metabolism in several ways, including the metabolism of lipids. Recently, we and others have shown that feeding oxidized oils to rats causes a reduction of concentrations of triacylglycerols and cholesterol in liver and plasma \((2–4)\). The reduction of triacylglycerols in liver and plasma may be due to a stimulation of hepatic \(\beta \)-oxidation triggered by an activation of PPAR\(\alpha\) and a reduced hepatic de novo fatty acid synthesis \((3–5)\). The molecular mechanisms underlying the reduction of cholesterol concentrations in liver and plasma, however, have not yet been elucidated.

Cholesterol homeostasis in mammalian cells is regulated by sterol regulatory element-binding protein (SREBP)\(^3\). SREBP belong to a large class of transcription factors containing basic helix-loop-helix-Zip domains, of which 3 isoforms have been characterized: SREBP-1a, -1c, and -2 \((6,7)\). Whereas SREBP-1c, the predominant isoform in adult liver, preferentially activates genes required for fatty acid synthesis, SREBP-2 preferentially activates the LDL receptor gene and various genes required for cholesterol synthesis, such as 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase \((6,7)\). SREBP-1a is an activator of both the cholesterol and fatty acid biosynthetic pathways, but it is present in much lower amounts in liver than the other 2 forms \((8)\). After synthesis in membranes of the endoplasmic reticulum, SREBP form a complex with SREBP-cleavage activating protein (SCAP). When cells are depleted of sterols, SCAP escorts SREBP from the endoplasmic reticulum to the Golgi. Within the Golgi, 2 resident proteases, site-1 protease and site-2 protease, sequentially cleave the SREBP, release the amino-terminal basic helix-loop-helix-Zip-containing domain from the membrane, and allow it to translocate to the nucleus and activate transcription of their target genes. Recently, insulin-induced genes (Insig)-1 and -2 were identified as membrane proteins that reside in the endoplasmic reticulum and play a central role in the regulation of SREBP cleavage \((9,10)\). When intracellular sterol concentrations are increased, SCAP binds to Insig, an action that prevents the translocation of the SREBP-SCAP complex from the endoplasmic reticulum to Golgi and the

1. Supported by a grant from Land Sachsen-Anhalt (to A.K.).
3. Abbreviations used: ACO, acyl-CoA oxidase; Cyp4A1, cytochrome P450 4A1; HMG-CoA, 3-hydroxy-3-methylglutaryl CoA; Insig, insulin-induced gene; mRNA, messenger RNA; SCAP, SREBP-cleavage activating protein; SREBP, sterol regulatory element-binding protein.

* To whom correspondence should be addressed. E-mail: klaus.eder@landw.uni-halle.de.
proteolytic activation of SREBP. As a result, the synthesis of cholesterol and fatty acids declines. We recently observed in rats that activation of PPARα caused an upregulation of the expression of Insig-1 in the liver, which in turn inhibited proteolytic activation of SREBP-2 and lowered hepatic cholesterol synthesis and liver and plasma cholesterol concentrations (5). We and others have found that feeding an oxidized fat causes an activation of PPARα in the liver of rats or pigs and in rat fetuses (4,11–13). Therefore, we assume that oxidized fats affect cholesterol metabolism in a similar way as clofibrate did in our recent study. Our hypothesis is that the reduced concentrations of cholesterol in liver and plasma observed in rats fed an oxidized oil are mediated by an increased gene expression of Insig in the liver. An upregulation of Insig is expected to lower the concentration of the transcriptionally active SREBP-2 in the nucleus, which in turn leads to a reduced expression of its target genes involved in hepatic cholesterol synthesis (e.g. HMG-CoA reductase) and cholesterol uptake (LDL receptor) and explains reduced plasma and liver cholesterol concentrations. To proof this hypothesis, we performed an experiment with rats that were orally administered either a fresh or an oxidized oil. For an oxidized oil, we used an oil treated at a relatively low temperature over a long period, because such oils have high concentrations of primary lipid peroxidation products such as hydroxy- and hydroperoxy fatty acids, which are regarded as very potent PPARα agonists (14–16).

Materials and Methods

Animals and diets. Male Sprague-Dawley rats supplied by Charles River with an initial body weight of 115 ± 14 g (mean ± SD) were randomly assigned to 2 groups of 9 rats each. They were kept individually in Macrolon cages in a room controlled for temperature (22 ± 2°C), relative humidity (50–60%), and light (12-h-light/-dark cycle). All experimental procedures described followed established guidelines for the care and handling of laboratory animals and were approved by the council of Saxony-Anhalt. All rats were orally administered 2 mL fresh or oxidized sunflower oil by gavage once per day 2 h after the beginning of the light cycle. All rats were fed a commercial standard basal diet (altromin 1324). According to the declaration of the manufacturer, this diet contained (per kilogram) 11.9 MJ metabolizable energy, 190 g crude protein, 60 g crude fiber, 40 g crude fat, and 70 g crude ash. The vitamin E concentration of this diet was 75 mg/kg. To standardize food intake, the diets were fed daily in restricted amounts of 12 g/d equivalent to an intake of 143 kJ metabolizable energy per day. Rats consumed water ad libitum from nipple drinkers during the entire experiment.

Preparation of the oxidized oil. The thermoxidized oil was prepared by heating sunflower oil (from a local supermarket) in an electric fryer (Saro Gastro-Products) for 25 d by 60°C. Throughout the heating process, air was continuously bubbled through the oil. The extent of lipid peroxidation was determined by assaying the peroxide value (17), concentration of total carbonyls (21), the percentage of total polar compounds (20), and the concentration of TBARS (18), concentration of conjugated dienes (19), and pH of oil (22). The fatty acid composition of the dietary fats was determined by GC. Fats were methylated with trimethylsulfonium hydroxide (22). Fatty acid methyl esters were separated by GC using a system (HP 5890, Hewlett Packard) equipped with an automatic on-column injector, a polar capillary column (30-m FFAP, 0.53-mm i.d., Macherey and Nagel) and a flame ionization detector (23).

Sample collection. At d 6, rats received the last dose of fresh or oxidized oil and 9 g of the diet again 2 h after the beginning of the light cycle and were killed 4 h later by decapitation under light anesthesia with diethyl ether. Blood was collected into heparinized polyethylene tubes. The liver was excised. Plasma was obtained by centrifugation of the blood (1100 × g; 10 min, 4°C) and stored at −20°C. Liver samples for RNA isolation and lipid extraction were snap-frozen in liquid nitrogen and stored at −80°C.

Real-time RT-PCR analysis. Total RNA was isolated from rat liver by TRIZOL reagent (Life Technologies) according to the manufacturer’s protocol. cDNA synthesis was carried out as described (16). The messenger RNA (mRNA) expression of genes was measured by real-time detection PCR using SYBR Green 1 and the Rotor Gene 2000 system (Corbett Research). Real-time detection PCR was performed with 1.25 units Taq DNA polymerase, 500 μM dNTPs, 3 μM of each primer (Operon Biotechnologies). For determination of mRNA concentration, a threshold cycle was obtained from each amplification curve using the software RotorGene 4.6 (Corbett Research). Calculation of the relative mRNA concentration was made using the ΔΔ threshold cycle method as previously described (24). We used the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (EC1.2.1.12) for normalization. The primer sequences used for real-time detection PCR were described previously (5).

Immunoblot analysis. Nuclear extracts of rat livers were prepared from fresh tissue samples (150 mg) according to Qaqo et al. (25). The protein content of the samples was determined by the bicinchoninic acid assay. We purchased bichenchoninic acid reagent from Interchim. Equal amounts of proteins were pooled from 5 and 4 rats, respectively, per group and 80 μg protein per lane was separated on 10% SDS-polyacrylamide gels according to the method of Laemmli et al. (26) and electrotransferred to a nitrocellulose membrane (Pall). Polyclonal anti-SREBP-2 antibody (Abcam) was used to detect nuclear SREBP-2 using enhanced chemiluminescence reagent (GE Healthcare) and a chemiluminescence imager camera (BioStep). Signals were analyzed with the Phoretix TotalLab TL100 software. The anti-rabbit-IgG peroxidase conjugate antibody was purchased from Sigma-Aldrich.

Liver, plasma, and lipoprotein cholesterol. Rat liver lipids were extracted with a mixture of n-hexane and isopropanol (3:2, v:v) (27). Aliquots of the lipid extracts were dried and dissolved in a small volume of Triton X-100 (28). Plasma lipoproteins were separated by stepwise ultracentrifugation as described (5). Total cholesterol concentrations of liver, plasma, and lipoproteins were determined using the enzymatic reagent kit (Ecoline S”, Dialys). Statistical analysis. Means of treatments and control were compared by Student’s t test using the Minitab Statistical software (Minitab). Values in the text are means ± SD. Means were considered significantly different at P < 0.05.

Results

Characterization of the experimental oil. Palmitic (16:0), stearic (18:0), oleic (18:1), and linoleic acid (18:2 (n-6)) were the major fatty acids in both oils, accounting for >98 g/100 g total fatty acids. Due to loss of PUFA by oxidation during heat treatment of the oil, the oxidized oil had a lower proportion of linoleic acid and slightly higher proportions of SFA and oleic acid (Table 1). The oxidized oil had much higher concentrations of peroxides (125-fold), conjugated dienes (>2740-fold), TBARS (11-fold), total carbonyls (32-fold), polar compounds (4-fold), and a higher acid value (14-fold) than the fresh oil (Table 1).

Body weight and relative liver weight of rats. Final body weight did not differ between groups of rats (fresh oil, 144 ± 14 g; oxidized oil, 133 ± 14 g; n = 9). However, body weight gain over the feeding period was lower in rats administered the oxidized oil (17.5 ± 6.4 g; n = 9) than in rats administered the fresh oil (29.7 ± 4.5 g; n = 9) (P < 0.05). The relative liver weight, expressed per kilogram body mass, was higher in rats administered the oxidized oil (49.7 ± 3.4 g/kg; n = 9) than in those administered the fresh oil (39.4 ± 2.0 g/kg) (P < 0.001).

Relative mRNA concentrations of PPARα and PPARγ downstream genes in the liver. Relative mRNA concentration
TABLE 1 Characteristics of the experimental oils

<table>
<thead>
<tr>
<th></th>
<th>Fresh oil</th>
<th>Oxidized oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major fatty acids, g/100 g fatty acids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:0</td>
<td>6.1</td>
<td>8.5</td>
</tr>
<tr>
<td>18:0</td>
<td>3.3</td>
<td>4.9</td>
</tr>
<tr>
<td>18:1</td>
<td>32.2</td>
<td>35.7</td>
</tr>
<tr>
<td>18:2 (n-6)</td>
<td>55.9</td>
<td>41.7</td>
</tr>
<tr>
<td>18:3 (n-3)</td>
<td>0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Peroxidation products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peroxide value, mEq O₂/kg</td>
<td>3.0</td>
<td>378.6</td>
</tr>
<tr>
<td>Conjugated dienes, mmol/kg</td>
<td><0.1</td>
<td>273.6</td>
</tr>
<tr>
<td>TBARS, mmol/kg</td>
<td>1.1</td>
<td>13.1</td>
</tr>
<tr>
<td>Total carbonyls, mmol/kg</td>
<td>2.9</td>
<td>96.9</td>
</tr>
<tr>
<td>Total polar compounds, %</td>
<td>5.1</td>
<td>27.8</td>
</tr>
<tr>
<td>Acid value, g KOH/kg</td>
<td>0.4</td>
<td>5.8</td>
</tr>
</tbody>
</table>

FIGURE 1 Relative mRNA concentrations of PPARα, ACO, and Cyp4A1 in rat livers treated with fresh or oxidized oil. Values are means ± SD, n = 9. **Significantly different from rats treated with fresh oil, P < 0.001.

FIGURE 2 Relative mRNA concentrations of Insig-1 and Insig-2a in rat livers treated with fresh or oxidized oil. Values are means ± SD, n = 9. *Significantly different from rats treated with fresh oil, P < 0.05.

FIGURE 3 Effect of an oxidized oil on SREBP-2 and its target genes in the liver of rats. Concentration of nuclear SREBP-2 (—68 kDa) in the liver of rats treated with fresh or oxidized oil was determined by western blot (A). Liver nuclear extracts of 5 and 4 rats, respectively, from each group were pooled. Relative mRNA concentrations of SREBP-2, HMG-CoA reductase, and LDL receptor in the liver of rats treated with fresh or oxidized oil (B). Values are means ± SD, n = 9. *Significantly different from rats treated with fresh oil, P < 0.05.

Discussion

We recently found that treatment with clofibrate inhibits the proteolytic activation of SREBP-2 by an upregulation of the expression of Insig-1, which in turn lowered transcription of SREBP-2 target genes involved in hepatic cholesterol synthesis and uptake and reduced liver and plasma cholesterol concentrations in rats (5). This effect was probably caused by PPARα activation. In this study, we investigated the hypothesis that oxidized fats are able to exert similar effects due to their ability to activate PPARα. Hydroxy- and hydroperoxy fatty acids, such as hydroxyoctadecadienoic and hydroperoxyoctadecadienoic acid, occurring in oxidized fats are very potent PPARα agonists (14–16). These fatty acids are produced during the early stage of lipid peroxidation. Because they are unstable and decompose at high temperatures (29), fats treated at low temperature have much higher concentrations of these primary lipid peroxidation products than fats treated at high temperatures (4). The high peroxide value and the high concentration of conjugated dienes of PPARα in the liver did not differ between groups (Fig. 1). However, rats administered the oxidized oil had higher relative mRNA concentrations of the PPARα downstream genes acyl-CoA oxidase (ACO) and cytochrome P450 4A1 (Cyp4A1) than rats administered fresh oil (P < 0.05; Fig. 1).

Relative mRNA concentrations of Insig in the liver. Relative mRNA concentrations of Insig-1 and Insig-2a, the liver-specific isoform of Insig-2, in the liver were higher in rats administered the oxidized oil than in those administered the fresh oil (P < 0.05; Fig. 2).

Relative concentration of nuclear SREBP-2 and relative mRNA concentrations of SREBP-2, HMG-CoA reductase, and LDL receptor in the liver. Rats administered the oxidized oil had lower protein concentrations of nuclear SREBP-2 in the liver than rats administered the fresh oil (relative values are the mean of 2 pools for each group: fresh oil, 1.00 ± 0.45; oxidized oil, 0.26 ± 0.02; P < 0.05; Fig. 3A). Relative mRNA concentrations of SREBP-2 and its target genes HMG-CoA reductase and LDL receptor were also lower in rats administered the oxidized oil than in those administered the fresh oil (P < 0.05; Fig. 3B).

Cholesterol concentrations in liver, plasma, VLDL, LDL, and HDL. Rats administered the oxidized oil had lower concentrations of cholesterol in liver, plasma, VLDL, and LDL than rats administered the fresh oil (P < 0.05); the concentration of cholesterol in LDL did not differ between groups (Table 2).
TABLE 2 Concentration of cholesterol in liver, plasma, and plasma lipoproteins of rats treated with fresh or oxidized oil

<table>
<thead>
<tr>
<th></th>
<th>Fresh oil</th>
<th>Oxidized oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver, μmol/g</td>
<td>7.56 ± 0.42</td>
<td>6.15 ± 0.68**</td>
</tr>
<tr>
<td>Plasma, mmol/L</td>
<td>2.07 ± 0.23</td>
<td>1.68 ± 0.18*</td>
</tr>
<tr>
<td>VLDL, mmol/L</td>
<td>0.16 ± 0.08</td>
<td>0.02 ± 0.01**</td>
</tr>
<tr>
<td>LDL, mmol/L</td>
<td>0.56 ± 0.11</td>
<td>0.54 ± 0.10</td>
</tr>
<tr>
<td>HDL, mmol/L</td>
<td>1.27 ± 0.17</td>
<td>1.10 ± 0.17*</td>
</tr>
</tbody>
</table>

1 Results are means ± SD, n = 9. Asterisks indicate significant differences from group fed fresh oil. *P < 0.05, **P < 0.001.

indicate that the oxidized oil used in this study indeed had high concentrations of hydroxy- and hydroperoxy fatty acids. Due to the loss of PUFA during the heating process, the concentrations of PUFA (i.e., linoleic acid) in the oxidized oil were slightly lower than in the fresh. Although intake of PUFA can influence cholesterol metabolism, i.e., plasma cholesterol concentration (30), we assume that the small difference in the intake of PUFA cannot be the main reason for the differences in cholesterol metabolism observed in this study. This assumption is confirmed by the observation that liver and plasma cholesterol concentrations were also reduced by oxidized oils in a similar extent in recent studies in which fresh and oxidized oils were equalized for their fatty acid composition (4,31–33). So that all rats obtained the same dose of oxidized oil, we administered it orally by gavage. The oxidized and fresh oil, respectively, accounted for about 25% of total energy of the total daily feed. Because it was observed in a previous rat study that even short term application of a PPARα agonist led to the typical changes known for PPARα activation [such as upregulation of classical target genes involved in β-oxidation and reduction of triacylglycerol concentration (16)], we decided to give the oxidized oil during a relatively short period of 6 d. The intake of oxidized fats could cause a reduction of the food intake in rats, which could in turn cause secondary effects that interact with the effect of treatment (34,35). To ensure an identical food intake in both groups of rats, we used a controlled feeding system in which each rat consumed 12 g diet/d. This amount of diet is slightly below that rats would consume ad libitum but is about 50% in excess of that necessary to meet the maintenance energy requirement (36) and therefore ensures adequate growth. The finding that rats administered the oxidized oil gained less weight during the experimental period than those administered the fresh oil even though both groups received an identical amount of diet indicates that the oxidized oil impaired the feed conversion ratio. This finding agrees with other reports that also showed that feeding of oxidized fats impairs growth of rats (37–40). We did not investigate the reason for this. Previous studies, however, have shown that oxidized fats lower the digestibility of nutrients and this may be the reason for the reduced body weight gains of the rats administered the oxidized oil observed in this study (37,41). However, daily body weight gains of the rats administered the oxidized oil were also within the normal physiological range and as these rats appeared quite normal, we assume that the oxidized oil did not cause general toxicity.

Studies in rats and pigs have shown that feeding oxidized oils lowers plasma and tissue tocopherol concentrations and causes oxidative stress (4,32,34,35,42). In this study, we did not determine the vitamin E status of the animals. According to these recent studies, administration of the oxidized fat probably also lowered plasma and tissue vitamin E concentrations compared with control animals. Nevertheless, because the diet used in this study had a relatively high vitamin E concentration and because the experimental period was relatively short, we assume that the rats administered the oxidized oil had an adequate vitamin E status in spite of the vitamin E consuming effect of the oxidized oil. Therefore, it is unlikely that the results in this study were confounded by vitamin E deficiency in the rats administered the oxidized fat.

The finding of increased mRNA concentrations of the typical PPARα downstream genes ACO and Cyp4A1 (43) in the liver and increased liver masses indeed indicates that the oxidized oil caused an activation of PPARα in the liver of the rats. This indication agrees with recent studies in rats and pigs, which also showed that intake of oxidized fats leads to an activation of PPARα in the liver (34,12,44,45). Activation of PPARα by the oxidized oil may be due to the presence of hydroxy- and hydroperoxy fatty and cyclic fatty acids, all of which have been shown to be potent PPARα activators (14–16,46). We recently showed that the effect of oxidized fats on activation of PPARα is independent of the dietary vitamin E concentration (4). The finding that oxidized fats also exert a PPARα-activating effect at very high dietary vitamin E concentrations (which suppress the induction of oxidative stress) indicates that activation of PPARα is not caused by oxidative stress but by lipid peroxidation products present in the oxidized oil.

This study shows for the first time, to our knowledge, that administration of an oxidized oil upregulates the gene expression of Insig-1 and Insig-2a in the liver. Because Insig are able to retain the SCAP-SREBP-complex within the endoplasmic reticulum, thus inhibiting the proteolytic activation of SREBP in the Golgi (9,10), this event is probably the reason for the lower concentration of the mature SREBP-2 in the nucleus, which in turn leads to a reduced transcription of HMG-CoA reductase, the rate-limiting enzyme of de novo synthesis of cholesterol, and LDL receptor. Reduced cholesterol concentrations in liver and plasma, therefore, are likely the result of a reduction of hepatic cholesterol synthesis. Reduced hepatic cholesterol concentrations, moreover, may be in part due to a reduced uptake of LDL into liver cells. Besides nuclear concentrations of SREBP-2, mRNA concentration of SREBP-2 was also reduced in the liver of rats administered the oxidized oil. Because SREBP-2 contains a sterol-regulatory element in its enhancer/promoter region and thus the nuclear form can activate its own gene in an autoregulatory loop (47), this reduction is probably the effect of the reduced nuclear SREBP-2 concentration. In previous experiments with Fao cells treated with the PPARα agonist WY 14643, we demonstrated that the decreased SREBP-2 mRNA concentration did not precede the decrease of its nuclear form, indicating that it is due, rather, to increased expression of Insig (5).

Considering that similar effects were observed in the liver of rats treated with the synthetic PPARα agonist clofibrate and in rat hepatoma cells treated with the more potent and selective PPARα agonist WY 14,643 (5), we propose that the oxidized oil upregulated Insig in the liver of rats by PPARα activation. A functional PPARα response element that is regulated by PPARγ has already been identified in the human Insig-1 gene (48). Analysis of the 5′ flanking region of rat Insig-1 using the PPAR response element consensus sequence from literature revealed 2 putative PPAR response elements at positions −592 and −1181 upstream of the transcription start site of the reported cDNA. The functionality of these PPAR response elements should be examined in future experiments.

We have recently observed that troglitazone, a synthetic PPARγ agonist, also lowers the mature SREBP-2 concentration
and inhibits cholesterol synthesis in HepG2, a human hepatoma cell line (49). Because oxidized fatty acids are also able to bind to and activate PPARγ (50,51), we cannot exclude the possibility that the oxidized oil induced the effects observed in this study by activating PPARγ, whose expression in the liver is, however, much lower than that of PPARα (52). The expression of Insig is also regulated by insulin. Insig-1 is upregulated by insulin, an effect caused by the insulin-induced stimulation of SREBP-1c gene transcription (53,54), which in turn leads to increased expression of Insig-1 that is an obligatory SREBP target gene (9). In contrast, the Insig-2a transcript in the liver is strongly repressed by insulin. Thus, during fasting and feeding, Insig-1 and Insig-2a are regulated reciprocally (55). It has been shown that dietary oxidizing frying oil lowers postprandial plasma concentration of insulin and induces glucose intolerance in rats and mice (56). As reduced plasma insulin concentrations would be expected to lower gene expression of Insig-1, it is unlikely that the upregulation of Insig-1 in the liver of rats administered the oxidized oil was mediated by insulin. Whether or not the observed upregulation of Insig-2a in the liver of rats treated with oxidized oil is mediated by reduced insulin concentrations or by PPARα activation remains unclear. In Fao cells treated with the PPARα agonist WY 14,643, mRNA concentration of Insig-2a was also increased, indicating that PPARα activation may also play a role in upregulation of Insig-2a.

The results of this study disagree with a recent study that investigated the effect of a moderately oxidized fat on triacylglycerol and cholesterol metabolism in pigs (45). In that study, the oxidized fat caused a moderate activation of PPARα but did not alter expression of genes involved in cholesterol metabolism, including SREBP-2, Insig, HMG-CoA reductase, and LDL receptor. That study and our study may disagree because of at least 2 reasons. First, the animal model used, pigs, belong to the group of nonproliferating species and have a lower expression of PPARα in the liver and a much weaker response of many genes to PPARα activation than rats, which belong to the group of proliferating species (57). Second, the fat used in the recent study performed with pigs was, according to concentrations of lipid peroxidation products, less oxidized than the fat used in this study. In the pig study, we used a mildly oxidized fat in which concentrations of peroxides (4-fold), conjugated dienes (4-fold), carbonyls (10-fold), and thiobarbituric acid reactive substances (30-fold) were only moderately increased compared with the fresh control fat. The oxidized fat used in this study had much higher concentrations of lipid peroxidation products, particularly of primary lipid peroxidation products, than that used in the pig study.

Although this study in rats shows that oxidized fats influence cholesterol metabolism via an upregulation of Insig, an effect probably mediated by activation of PPARα, it remains to be investigated whether such an effect also occurs in humans. With respect to expression and activation of PPARα, humans behave similarly to pigs. Humans and pigs have a similar expression of PPARα in the liver that is, however, 90% lower than in rats (58). Accordingly, upregulation of PPARα target genes in the liver by PPARα agonists is much weaker in pigs and humans than in rats (59,60). Therefore, it is expected that effects of oxidized fats on cholesterol metabolism, mediated by PPARα activation, in humans are weaker than those in rats observed in this study.

The fat used in this study prepared by heating at a relatively low temperature over a long period does not directly reflect the oxidized fats in human nutrition that originate predominantly from deep frying of foods. However, we have recently shown that fats produced under deep frying conditions lower liver and plasma cholesterol concentrations in rats to a similar extent as fats heated at a low temperature over a long period such as that used in this study (61). Moreover, it has been shown that fats prepared by deep frying are able to activate PPARα in the liver of rats (3,44). Therefore, it is likely that deep-fried fats influence the cholesterol metabolism in a similar way as fats prepared at a lower temperature for a longer period.

In conclusion, this study shows that oxidized oils are able to affect the activation of SREBP-2 by an upregulation of Insig-1 and Insig-2a in the liver of rats, which in turn lowers transcription of genes involved in cholesterol synthesis and uptake. This provides an explanation for reduced concentrations of cholesterol in liver and plasma observed in rats in this and recent studies. Although we assume that these effects are triggered by activation of PPARα, this must be proven in future studies.

Literature Cited

Dietary oxidised fat up regulates the expression of organic cation transporters in liver and small intestine and alters carnitine concentrations in liver, muscle and plasma of rats

Alexander Koch, Bettina König, Sebastian Luci, Gabriele I. Stangl and Klaus Eder*
Institute of Agricultural and Nutritional Sciences, Martin-Luther-University of Halle-Wittenberg, Emil-Abderhalden-Strasse 26, D-06108 Halle (Saale), Germany

(Received 19 December 2006 – Revised 3 April 2007 – Accepted 12 April 2007)

It has been shown that treatment of rats with clofibrate, a synthetic agonist of PPARα, increases mRNA concentration of organic cation transporters (OCTN)-1 and -2 and concentration of carnitine in the liver. Since oxidised fats have been demonstrated in rats to activate hepatic PPARα, we tested the hypothesis that they also up regulate OCTN. Eighteen rats were orally administered either sunflower-seed oil (control group) or an oxidised fat prepared by heating sunflower-seed oil, for 6 d. Rats administered the oxidised fat had higher mRNA concentrations of typical PPARα target genes such as acyl-CoA oxidase, cytochrome P450 4A1 and carnitine palmitoyltransferases-1A and -2 in liver and small intestine than control rats (P<0.05). Furthermore, rats treated with oxidised fat had higher hepatic mRNA concentrations of OCTN1 (1.5-fold) and OCTN2 (3.1-fold), a higher carnitine concentration in the liver and lower carnitine concentrations in plasma, gastrocnemius and heart muscle than control rats (P<0.05). Moreover, rats administered oxidised fat had a higher mRNA concentration of OCTN2 in small intestine (2.4-fold; P<0.05) than control rats. In conclusion, the present study shows that an oxidised fat causes an up regulation of OCTN in the liver and small intestine. An increased hepatic carnitine concentration in rats treated with the oxidised fat is probably at least in part due to an increased uptake of carnitine into the liver which in turn leads to reduced plasma and muscle carnitine concentrations. The present study supports the hypothesis that nutrients acting as PPARα agonists influence whole-body carnitine homeostasis.

Carnitine: Oxidised fat: Peroxisome proliferator-activated receptor-α: Organic cation transporters

Carnitine (L-3-hydroxy-4-N,N,N-trimethylaminobutyrate) is an essential metabolite that has a number of indispensable functions in intermediary metabolism. The most prominent function lies in its role in the transport of activated long-chain fatty acids from the cytosol to the mitochondrial function lies in its role in the transport of activated long-chain fatty acids from the cytosol to the mitochondrial matrix where β-oxidation takes place. All tissues that use fatty acids as a fuel source require carnitine for normal function. Carnitine is derived from dietary sources and endogenous biosynthesis. Carnitine biosynthesis involves a complex series of reactions involving several tissues. Lysine provides the carbon backbone of carnitine. Lysine in protein peptide linkages undergoes methylation of the ε-amino group to yield trimethyllysine, which is released upon protein degradation. Muscle is the major source of trimethyllysine. The released trimethyllysine is further oxidised to butyrobetaine by the action of trimethyllysine dioxygenase, 3-hydroxy-N-trimethyllysine aldolase and 4-N-trimethylaminobutyraldehyde dehydrogenase. Butyrobetaine is hydroxylated by γ-butyrobetaine dioxygenase to form carnitine. The last reaction which is rate-limiting for carnitine synthesis occurs primarily in the liver and kidneys (see Fig. 1).

Distribution of carnitine within the body and intracellular homeostasis of carnitine are controlled by organic cation transporters (OCTN) which belong to the solute carrier (SLC) 22A family, localised to the apical membrane of cells. Three OCTN have been identified so far: OCTN1, OCTN2 and OCTN3. OCTN are polyspecific; they transport several cations and L-carnitine. Carnitine transport by OCTN1 and OCTN2 is Na dependent whereas that by OCTN3 is Na independent. Carnitine transport by OCTN1 and OCTN2 is Na dependent whereas that by OCTN3 is Na independent. OCTN1 and OCTN2 are expressed in several tissues such as kidney, intestine, skeletal muscle, heart, liver and brain. OCTN3 is expressed exclusively in the testes and kidneys. Among the three OCTN, OCTN3 has the highest specificity for carnitine; OCTN1 has the lowest one. OCTN operate on the intestinal absorption and renal reabsorption of carnitine and play a major role in tissue distribution by catalysing the uptake of carnitine into body cells. Due to its high binding affinity for carnitine and its wide expression, OCTN2 seems to be the most physiologically important carnitine transporter. OCTN1 contributes less to carnitine transport than OCTN2 due to its low carnitine transport activity. OCTN3 may be important for carnitine uptake into the testes, and may contribute to the reabsorption of carnitine in the kidneys. The fact that inborn or acquired defects of OCTN lead to primary or secondary systemic carnitine deficiency demonstrates their essential role in carnitine homeostasis.

Abbreviations: CPT, carnitine palmitoyltransferase; Cyp, cytochrome P450; OCTN, organic cation transporter.

*Corresponding author: Professor Dr Klaus Eder, fax +345 5272124, email klaus.eder@landw.uni-halle.de
It has been shown previously that starvation or treatment of rats with clofibrate increases the concentration of carnitine in the liver. Both starvation and clofibrate treatment lead to an activation of PPARα, a transcription factor belonging to the nuclear hormone receptor superfamily. We have recently shown that activation of PPARα by clofibrate treatment causes an up regulation of OCTN1 and OCTN2 in rat liver. These results strongly indicated that increased carnitine concentrations in livers of rats starved or treated with clofibrate were due to increased uptake of carnitine from blood into the liver. Indeed, plasma carnitine concentrations were reduced in rats treated with clofibrate which may be caused by an increased uptake into the liver.

In addition to synthetic agonists, several naturally occurring compounds are able to activate PPARα in vivo. Recently, we and others have shown that dietary oxidised fats prepared by the heating of vegetable oils activate hepatic PPARα in rats and pigs. In the present study, we tested the hypothesis that oxidised fats are also able to up regulate the expression of OCTN (OCTN1, OCTN2) in the liver due to their ability to activate PPARα and thereby increase hepatic carnitine concentration. For this end, we performed an experiment with growing rats as an animal model, according to a previous study dealing with the effects of an oxidised oil on PPARα activation.

More than 95% of the total carnitine in the body is localised in the muscle which serves as a carnitine storage. When plasma carnitine concentrations are lowered, such as by treatment with pivalate, carnitine is mobilised from the muscle in order to normalise plasma carnitine concentrations. Therefore, an increased uptake of carnitine from the blood into the liver by up regulation of hepatic OCTN should lead to a mobilisation of carnitine storage in the muscle. To investigate this, we also determined carnitine concentrations in skeletal muscle and heart of the rats.

OCTN1 and OCTN2 are also highly expressed in the intestine and particularly OCTN2 plays an important role in the absorption of L-carnitine from the diet. As the small intestine also has a high expression of PPARα, it seems possible that an oxidised fat could increase the gene expression of OCTN also in the small intestine via an activation of PPARα. Besides OCTN, the amino acid transporter ATB0 is involved in the intestinal absorption of carnitine from the diet. In order to obtain information whether PPARα activation by synthetic or native agonists could influence intestinal carnitine absorption, we also determined mRNA concentration of ATB0 in small intestine.

Materials and methods

Animal experiment

Male Sprague-Dawley rats, aged 5 weeks old, supplied by Charles River (Sulzfeld, Germany) with an average initial body weight of 115 (SD 14) g were randomly assigned to two groups of nine rats each. They were kept individually in Macrolon cages in a room controlled for temperature (22 ± 2°C), relative humidity (50–60%) and light (12 h light–dark cycle). All experimental procedures described followed established guidelines for the care and handling of laboratory animals and were approved by the council of Saxony-Anhalt. The animals received either 2 ml fresh sunflower-seed oil (control group) or oxidised sunflower-seed oil (see Preparation of the oxidised fat) by oral administration once per d 2 h after the beginning of the light cycle. Afterwards, they obtained their daily food ration. All rats were fed a commercial standard basal diet (Altromin 1324; Altromin GmbH, Lage, Germany). Concentration of total carnitine in the basal diet was 22 μmol/kg. To standardise food intake, diet intake was controlled. Each rat in the experiment received 12 g diet/d. This amount of diet which is approximately 20% below the amount of diet rats would consume ad libitum was completely ingested by all rats. Thus, the diet intake was identical in all the rats within this experiment. Water was available ad libitum from nipple drinkers during the whole experiment. At day 6 of treatment, rats received the last dose of fresh or oxidised fat and 9 g diet and were killed 4 h later by decapitation under light anaesthesia with diethyl ether. Blood was collected into heparinised polyethylene tubes. Liver, heart, blood plasma, liver, heart, and skeletal muscle were collected and immediately frozen in liquid nitrogen.
and gastrocnemius muscles were quickly removed, frozen with liquid N₂ and stored at −80°C pending further analysis. Plasma was obtained by centrifugation of the blood (1100g; 10 min; 4°C) and stored at −20°C. Liver samples for RNA isolation and lipid extraction were snap-frozen in liquid N₂ and stored at −80°C. The small intestine was rapidly excised, washed with cold 0.9% NaCl (w/v) and mucosal scrapings were obtained from the jejunum (defined by length), snap-frozen and stored at −80°C for RNA extraction.

Preparation of the oxidised fat

The thermoxidised oil was prepared by heating sunflower-seed oil obtained from a local supermarket in an electric fryer (Saro Gastro-Products GmbH, Emmerich, Germany) for 25 d at 60°C. Throughout the heating process, air was continuously bubbled into the fat. The extent of lipid peroxidation was determined by assaying the peroxide value,

\[\text{Peroxide value} = \frac{mEq O_2}{kg} \]

concentration of thiobarbituric acid-reactive substances, and conjugated dienes,

\[\text{Conjugated dienes} = \frac{mmol}{kg} \]

acid value,

\[\text{Acid value} = \frac{g KOH}{kg} \]

and total polar compounds,

\[\text{Total polar compounds} = \% \]

The thermoxidised oil was prepared by heating sunflower-seed oil obtained from a local supermarket in an electric fryer (Saro Gastro-Products GmbH, Emmerich, Germany) for 25 d at 60°C. Throughout the heating process, air was continuously bubbled into the fat. The extent of lipid peroxidation was determined by assaying the peroxide value, concentration of thiobarbituric acid-reactive substances and conjugated dienes, acid value, the percentage of total polar compounds and the concentration of total carbonyls. The oxidised fat had much higher concentrations of peroxides (126-fold), conjugated dienes (> 2740-fold), thiobarbituric acid-reactive substances (12-fold), total carbonyls (33-fold), polar compounds (5-fold) and a higher acid value (15-fold) than the fresh fat (Table 1).

Carnitine analysis

Carnitine was determined as \[^3H\]acetyl-carnitine after the esterification of non-esterified carnitine by carnitine acyltransferase according to McGarry & Foster with modifications proposed by Parvin & Pandey and Christiansen & Bremer. Plasma samples were used directly for the determination of the total carnitine after alkaline hydrolysis as described for the tissue samples below. Tissue samples were freeze dried and milled. Then 100 mg liver or 50 mg muscle powder were sonificated in 5 ml water for 15 min. Samples were centrifuged (12 000 g; 5 min) and non-esterified carnitine in the supernatant fraction was measured. For the determination of the total carnitine the samples were hydrolysed before the centrifugation. For this, 10 ml 0.2 M-potassium hydroxide were added, the samples were incubated at 30°C for 1 h and then neutralised by the addition of 0.2 M-HCl. Carnitine esterification was done in a final volume of 1 ml containing 0.1 M-HEPES (pH 7.4), 2 mM-N-ethylmaleimide, 1.25 mM-EDTA, 25 μM-[\(^3H\)]acetyl-CoA (29.4 MBq/mmol; GE Healthcare, Buckinghamshire, UK) and 1 U carnitine acyltransferase (Roche Diagnostic, Mannheim, Germany) for 30 min at room temperature. \[^3H\]acetyl-CoA not consumed by the reaction was bound to Dowex 1-X 8 and separated by centrifugation. Carnitine concentration was calculated using the radioactivity of the supernatant fraction measured in a liquid scintillation counter and corrected for non-specific radioactivity.

Reverse transcriptase polymerase chain reaction analysis

Total RNA was isolated from rat livers and mucosa scrapings, respectively, by TRIzol® reagent (Sigma-Aldrich, Steinheim, Germany) according to the manufacturer’s protocol. cDNA synthesis was carried out as described. The mRNA concentration of genes was measured by real-time detection PCR using SYBR® Green I and the Rotor Gene 2000 system (Corbett Research, Mortlake, Australia). Real-time detection PCR was performed with 1.25 U Taq DNA polymerase (Promega, Mannheim, Germany), 500 μM-dNTP and 26.7 pmol of the specific primers (Operon Biotechnologies, Cologne, Germany; Table 2). Annealing temperature for all primers was 60°C. For determination of mRNA concentration a threshold cycle (Ct) and amplification efficiency was obtained from each amplification curve using the software RotorGene 4.6 (Corbett Research). Calculation of the relative mRNA concentration was made using the ΔΔCt method as previously described. The housekeeping gene glyceraldehyde-3-phosphate dehydrogenase was used for normalisation. mRNA concentration of glyceraldehyde-3-phosphate dehydrogenase was not influenced by the treatment of rats with oxidised fat.

Statistical analysis

Means of the treatment and control groups were compared by an unpaired t test using the Minitab Statistical Software (Minitab, State College, PA, USA). Differences with P<0.05 were considered to be significant.

Results

Final weights and body-weight gains of the rats

Final body weights of rats treated with the oxidised fat (133 (SD 14) g) were not significantly different from the control rats (144 (SD 14) g) (nine rats for each group). However, rats treated with the oxidised fat had a lower body-weight gain (17.5 (SD 6.4) g) over the feeding period than the control rats (29.7 (SD 4.5) g) (nine rats for each group; P<0.05).

mRNA concentrations of acyl-CoA oxidase, cytochrome P450-4A1, carnitine palmitoyltransferases-1A and -2, organic cation transporters-1 and -2 and enzymes involved in hepatic carnitine synthesis (trimethyllysine dioxygenase, 4-N-trimethylaminobutyraldehyde dehydrogenase and γ-butyrobetaine dioxygenase) in the liver

Rats treated with the oxidised fat had higher mRNA concentrations of acyl-CoA oxidase, cytochrome P450 (Cyp)-4A1, carnitine palmitoyltransferase (CPT)-2, OCTN1 and OCTN2 in the liver than control rats (P<0.05); mRNA concentration of CPT1A, however, was not different in the rats treated with oxidised fat from the control rats (Fig. 2). Rats treated with the oxidised fat had a higher mRNA concentration of trimethyllysine dioxygenase in the liver than control rats (144 (SD 14) g) (nine rats for each group; P<0.05).

Table 1. Concentrations of various lipid oxidation products in the fats

<table>
<thead>
<tr>
<th>Oxidation product</th>
<th>Fresh fat</th>
<th>Oxidised fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peroxide value (mEq O₂/kg)</td>
<td>3·0</td>
<td>378·6</td>
</tr>
<tr>
<td>Conjugated dienes (mmol/kg)</td>
<td>< 0.1</td>
<td>273·6</td>
</tr>
<tr>
<td>TBARS (mmol/kg)</td>
<td>1·1</td>
<td>13·1</td>
</tr>
<tr>
<td>Total carbonyls (mmol/kg)</td>
<td>2·9</td>
<td>96·9</td>
</tr>
<tr>
<td>Total polar compounds (%)</td>
<td>5·1</td>
<td>27·8</td>
</tr>
<tr>
<td>Acid value (g KOH/kg)</td>
<td>0·4</td>
<td>5·8</td>
</tr>
</tbody>
</table>

TBARS, thiobarbituric acid-reactive substances.

* Data are the results of single measurements.
Oxidised fat and organic cation transporters

Table 2. Characteristics of the primers used in reverse transcriptase polymerase chain reaction analysis

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward primer (from 5’ to 3’)</th>
<th>Reverse primer (from 5’ to 3’)</th>
<th>bp</th>
<th>NCBI GenBank</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACO</td>
<td>CTTCTTGCTGGCTTCTCTCC</td>
<td>GCCGTTACCAGGCGCTGTA</td>
<td>415</td>
<td>NM_017340</td>
</tr>
<tr>
<td>ATB<sup>+</sup></td>
<td>ATCCGGAACGACTAGCTCAA</td>
<td>CCGATGAAATTCCAGGCTGTA</td>
<td>237</td>
<td>NM_001037544</td>
</tr>
<tr>
<td>BBD</td>
<td>ATCTGCGAAAGACCTGGGAAC</td>
<td>CCTCTTGAGTCCTGGCTG</td>
<td>183</td>
<td>NM_022629</td>
</tr>
<tr>
<td>Cyp4A1</td>
<td>CAGAAGAGAAGATGGGGAGC</td>
<td>TGAGAAGGGGCGAAGTAAGTGG</td>
<td>460</td>
<td>NM_175837</td>
</tr>
<tr>
<td>CPT1A</td>
<td>GAGAGACAGACACCATCATCAACATA</td>
<td>AGGTATGAGCTTATGCAACC</td>
<td>416</td>
<td>NM_031559</td>
</tr>
<tr>
<td>CPT2</td>
<td>TCTGCGATCAAGATGGAAC</td>
<td>GATCCTCCATCGGGAAGCTGA</td>
<td>237</td>
<td>NM_012930</td>
</tr>
<tr>
<td>GAPDH</td>
<td>GATGATTGCTCCGGTTGTTCC</td>
<td>GGTTGTTGAGGCTTTCTTACTC</td>
<td>337</td>
<td>BC059110</td>
</tr>
<tr>
<td>OCTN1</td>
<td>AGGTTTTGGCTCTGGGAACG</td>
<td>ACTCAGGAGTGAACACACAG</td>
<td>200</td>
<td>NM_022270</td>
</tr>
<tr>
<td>OCTN2</td>
<td>CCTCTGGCGCTGATTGAAC</td>
<td>GTCGCCTGAGAGCTGACG</td>
<td>188</td>
<td>NM_012930</td>
</tr>
<tr>
<td>TMLD</td>
<td>GCATGTCGATTGAAGCTGTA</td>
<td>GTGCACCCCTCCATATCTG</td>
<td>201</td>
<td>AF374406</td>
</tr>
<tr>
<td>TMABA-DH</td>
<td>TTTGAGACTGAAAGCCAGGAG</td>
<td>CACCGGGCCCTGAGGTATG</td>
<td>156</td>
<td>NM_022273</td>
</tr>
</tbody>
</table>

ACO, acyl-CoA oxidase; BBD, γ-butyrobetaine dioxygenase; Cyp, cytochrome P450; CPT, carnitine palmitoyltransferase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; OCTN, organic cation transporter; TMLD, trimethyllysine dioxygenase; TMABA-DH, 4-N-trimethylaminobutyraldehyde dehydrogenase.

rats (<0.05; Fig. 2). mRNA concentrations of 4-N-trimethylaminobutyraldehyde dehydrogenase and γ-butyrobetaine dioxygenase in the liver, however, did not differ between the two groups of rats (Fig. 2).

mRNA concentrations of acyl-CoA oxidase, cytochrome P450-4A1, carnitine palmitoyltransferases-1 and -2, organic cation transporters-1 and -2 and ATB⁺ in the small intestine

Rats treated with oxidised fat had higher mRNA concentrations of acyl-CoA oxidase, Cyp4A1, CPT1A, CPT2 and OCTN2 (<0.05), and they tended to have a higher mRNA concentration of OCTN1 (P=0.066) in the small intestine compared with control rats (Fig. 3). mRNA concentration of ATB⁺ in the small intestine was reduced in the rats fed the oxidised fat compared with those fed the fresh fat (P<0.05; Fig. 3).

Carnitine concentrations in liver, plasma and muscle

Rats treated with the oxidised fat had a higher carnitine concentration in the liver than control rats (<0.05, Fig. 4).

Plasma carnitine concentration was lower in the rats treated with oxidised fat (18.8 (SD 3.1) μmol/l) than in the control group (28.4 (SD 4.3) μmol/l) (nine rats for each group; P<0.05). Rats treated with oxidised fat also had lower carnitine concentrations in gastrocnemius and heart muscle than control rats (P<0.05; Fig. 4).

Discussion

We have recently found that treatment with clofibrate causes a strong up regulation of OCTN2, and a less strong up regulation of OCTN1, in the liver of rats which was accompanied by an increased hepatic carnitine concentration³⁴. This effect was probably caused by PPARα activation. In the present study, we investigated the hypothesis that oxidised fats are able to exert similar effects due to their ability to activate PPARα. Hydroxy- and hydroperoxy fatty acids such as hydroxyoctadecadienoic and hydroperoxyoctadecadienoic acid occurring in oxidised fats are very potent PPARα agonists^{39,40,41}. These fatty acids are produced during the early stage of lipid peroxidation. Since they are unstable and decompose at high temperatures, fats treated at low temperature have much higher concentrations of these primary lipid

Fig. 2. Effect of an oxidised fat on the relative mRNA concentrations of acyl-CoA oxidase (ACO), cytochrome P450 (Cyp)-4A1, carnitine palmitoyltransferases (CPT)-1A and -2, organic cation transporters (OCTN)-1 and -2, trimethyllysine dioxygenase (TMLD), 4-N-trimethylaminobutyraldehyde dehydrogenase (TMABA-DH) and γ-butyrobetaine dioxygenase (BBD) in the liver of rats. Rats were treated orally with 2 ml oxidised fat (■) or fresh fat (□; control = 1.00) for 6 d. Total RNA was extracted from rat livers and mRNA concentrations were determined by real-time detection RT-PCR analysis using glyceraldehyde-3-phosphate dehydrogenase mRNA concentration for normalisation. Values are means, with standard deviations represented by vertical bars (n 9). *Mean value was significantly different from that of the control rats (P<0.05).

Fig. 3. Effect of an oxidised fat on the relative mRNA concentrations of acyl-CoA oxidase (ACO), cytochrome P450 (Cyp)-4A1, carnitine palmitoyltransferases (CPT)-1A and -2, organic cation transporters (OCTN)-1 and -2 and amino acid transporter ATB⁺ in the small intestine of rats. Rats were treated orally with 2 ml oxidised fat (□) or fresh fat (■; control = 1.00) for 6 d. Total RNA was extracted from mucosal scrapings and mRNA concentrations were determined by real-time detection RT-PCR analysis using glyceraldehyde-3-phosphate dehydrogenase mRNA concentration for normalisation. Values are means, with standard deviations represented by vertical bars (n 9). *Mean value was significantly different from that of the control rats (P<0.05).
peroxidation products than fats treated at high temperature. This is the reason why we used a fat treated at a relatively low temperature for a long period. The high peroxide value and the high concentration of conjugated dienes indicate that this fat indeed had high concentrations of hydroxy- and hydroperoxy fatty acids which may be particularly responsible for the PPARα-activating effects of oxidised fats. To ensure that all rats obtained the same dose of oxidised fat, it was administered orally. The oxidised and fresh fat, respectively, accounted for about 25% of total energy of the total daily feed. Since it was observed in a previous rat study that even short-term application of a PPARα agonist led to the typical changes known for PPARα activation such as up regulation of classical target genes involved in β-oxidation and reduction of TAG concentration, we decided to give the oxidised fat over a relatively short time of 6 d. It has been shown that the intake of oxidised fats could cause a reduction of the food intake in rats which could cause secondary effects which interact with the effect of treatment. To ensure an identical food intake in both groups of rats, we used a controlled feeding system in which each rat consumed 12 g diet/d. This amount of diet is slightly below that that rats would consume ad libitum but in clear excess of that necessary to meet the maintenance energy requirement (which is approximately 6 g/d) and ensures an adequate growth of the rats. It is known that fasting causes an activation of PPARα due to the release of NEFA from the adipose tissue. To avoid PPARα activation due to an insufficient supply of energy, all the rats received their last portion of diet 4 h before decapitation. Therefore, we can exclude the possibility that PPARα was also activated in the control group fed the fresh fat. The finding that rats fed the oxidised fat gained less weight during the experimental period than those fed the fresh fat although both groups received an identical amount of diet indicates that the oxidised fat impaired the feed conversion ratio. This finding agrees with other reports which also showed that feeding of oxidised fats impairs the growth of rats. We did not investigate the reason for this. Previous studies, however, have shown that oxidised fats lower the digestibility of nutrients and this may be the reason for the reduced body-weight gains of the rats fed the oxidised fat observed in the present study. However, as rats fed the oxidised fat appeared quite normal, we assume that the oxidised fat did not cause general toxicity.

The finding of increased mRNA concentrations of the typical PPARα downstream genes acyl-CoA oxidase, Cyp4A1, CPT1A and CPT2 (for a review, see Mandard et al.) in liver and intestine indeed indicates that the oxidised fat caused an activation of PPARα in both liver and intestine of the rats. This indication agrees with recent studies in rats and pigs which also showed that intake of oxidised fats leads to an activation of PPARα in the liver.

The present study shows further that treatment of rats with an oxidised fat caused the same alterations as observed for clofibrate, namely increased hepatic mRNA concentrations of OCTN1 and OCTN2 and an increased hepatic carnitine concentration. Considering that a similar up regulation of OCTN1 and OCTN2 was observed in the liver of rats treated with the synthetic PPARα agonist clofibrate and in rat hepatoma cells treated with the more potent and selective PPARα agonist WY 14,643, we propose that the oxidised fat up regulated OCTN in the liver also by PPARα activation. In rat liver, OCTN1 and OCTN2 are highly expressed. Both of them are able to transport carnitine into the liver cell. However, it has been shown that OCTN2 has a higher carnitine transport activity than OCTN1. For that reason and as mRNA concentration of OCTN2 was more strongly increased by the oxidised fat than that of OCTN1, we assume that increased hepatic carnitine concentrations in rats treated with oxidised fat were caused mainly by an increased uptake of carnitine via OCTN2. Plasma carnitine concentrations are regulated by several events, namely intestinal absorption from the diet, renal excretion, endogenous synthesis in the liver and kidneys and movement of carnitine between plasma and tissues. We have not studied the pharmacokinetics of carnitine but it seems plausible that reduced plasma concentrations of carnitine in rats fed the oxidised fat may at least in part be due to an enhanced uptake into the liver. We measured mRNA concentrations of OCTN only in liver and small intestine; however, it is possible that they were increased also in other tissues in rats fed the oxidised fat. Therefore, an increased uptake of carnitine into other tissues besides liver could also contribute to the reduced plasma carnitine concentrations. In the kidney, OCTN2 functions to reabsorb carnitine from the urine. An up regulation of OCTN2 in kidney would be expected to reduce urinary excretion of carnitine which in turn results in an increased plasma carnitine concentration. However, the effect of oxidised fats on the gene expression of OCTN in those tissues and their consequences on whole-body carnitine homeostasis should be determined in future studies.

In the present study we also determined mRNA concentrations of various enzymes involved in hepatic carnitine biosynthesis in the liver which belongs like the kidney to the tissues being able to synthesise carnitine. It was found that oxidised fat treatment led to a moderate up regulation of trimethyllysine dioxygenase while mRNA concentrations of 4-N-trimethylaminobutyraldelyde dehydrogenase and γ-butyrobetaine dioxygenase, the rate-limiting enzyme of carnitine biosynthesis, remained unchanged by the treatment. This finding shows that PPARα activation by the oxidised oil does not up regulate the gene expression of enzymes involved in hepatic carnitine synthesis. Nevertheless, it is...
possible that carnitine hepatic biosynthesis was increased in rats treated with oxidised fat. The liver has a high capacity to convert γ-butyrobetaine into carnitine. As OCTN2 has a high affinity for γ-butyrobetaine, it is likely that an increased expression of OCTN2 may lead to an increased uptake of γ-butyrobetaine from plasma into the liver which in turn may have stimulated synthesis of carnitine in the liver. This assumption, however, has to be proven in further studies.

Muscle contains more than 95% of whole-body carnitine and serves as a carnitine storage. When plasma carnitine concentrations are lowered, such as by treatment with pivalate, carnitine can be mobilised from the muscle in order to normalise plasma carnitine concentrations. Therefore, we expected that a reduced plasma carnitine concentration may lead to a reduction of the carnitine concentration in muscle. The finding that the concentration of carnitine was reduced in gastrocnemius and heart muscle of rats treated with oxidised fat indeed suggests that carnitine might have been mobilised from muscle. In rats treated with clofibrate, a reduction of muscle carnitine concentration has also been found. A reduced carnitine concentration in muscle could also be due to a reduced uptake of carnitine due to a decreased activity of OCTN, which, however, is unlikely with respect to the finding that OCTN in liver were up regulated in rats fed the oxidised fat. As muscle also has a high expression of PPARα, we expect that the expression of OCTN in muscle was increased rather than reduced by the dietary oxidised fat.

The present study further shows that a dietary oxidised fat leads to an up regulation of OCTN2 in the small intestine. As PPARα target genes (acyl-CoA oxidase, CYP4A1, CPT1a, CPT2) in the intestine were also up regulated in rats fed the oxidised fat, we assume that the increased expression of OCTN in intestine was also caused by activation of PPARα. As intestinal OCTN localised in the apical membrane of mucosa cells are able to transport carnitine from the diet into the cell, an increased expression of these transporters may enhance their capacity to absorb carnitine. However, as ATB, another transporter involved in the intestinal absorption of carnitine, was down regulated in rats fed the oxidised fat, it is difficult to draw conclusions about the whole intestinal absorption of carnitine from the diet. Nevertheless, the observed up regulation of intestinal OCTN may be relevant because they are polyspecific and do not only transport carnitine from the intestinal lumen into the mucosa cell but are also able to bind various drugs such as verapamil, spironolactone or mildronate and other monovalent cations. As oxidised fats increase the gene expression of OCTN in the small intestine, it is possible that these fats also increase the absorption of various drugs from the intestine.

The hypothesis that the up regulation of OCTN was caused by PPARα activation provides also an explanation for the observed increased hepatic carnitine concentrations in fasted rats. During fasting, NEFA are liberated from adipose tissue and act as activators of PPARα when they have entered the liver. Activation of PPARα up regulates many genes involved in hepatic mitochondrial and peroxisomal β-oxidation of fatty acids to supply acetyl-CoA used for the generation of ATP via the citrate cycle and for the generation of ketone bodies, an important fuel for the brain during fasting. These metabolic adaptations during fasting triggered by PPARα aim to minimise the use of protein and carbohydrates as fuel and allow mammals to survive long periods of energy deprivation. CPT are rate limiting for β-oxidation of fatty acids. The up regulation of CPT, which is essential for the metabolic adaptations occurring during fasting, might increase the demand for carnitine in liver cells. We postulate that up regulation of OCTN by PPARα activation is a means to supply liver cells with sufficient carnitine required for the transport of excessive amounts of fatty acids into the mitochondrion, and therefore plays an important role in the adaptive response of liver metabolism to fasting.

In conclusion, the present study shows that an oxidised fat causes an up regulation of OCTN2 in the liver and small intestine of rats. As OCTN2 catalyses the uptake of carnitine into cells, these fats influence whole-body carnitine homeostasis. An increased hepatic carnitine concentration in rats treated with oxidised fat may be at least in part due to an increased uptake of carnitine from blood into the liver. Since OCTN2 binds not only carnitine but also various drugs, the possibility exists that increased OCTN2 expression in the small intestine may improve the absorption of various drugs.

References

PPARα Mediates Transcriptional Upregulation of Novel Organic Cation Transporters-2 and -3 and Enzymes Involved in Hepatic Carnitine Synthesis

ALEXANDER KOCH, BETTINA KÖNIG, GABRIELE I. STANGL, AND KLAUS EDER 1

Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, D-06108 Halle (Saale), Germany

We tested the hypothesis that transcription of novel organic cation transporters (OCTNs) is directly regulated by peroxisome proliferator–activated receptor (PPAR)-α. Therefore, wild-type mice and mice deficient in PPARα (PPARα−/−) were treated with the PPARα agonist WY 14,643. Wild-type mice treated with WY 14,643 had a greater abundance of OCTN2 mRNA in their liver, muscle, kidney, and small intestine and a greater abundance of OCTN3 mRNA in kidney and small intestine than did untreated wild-type mice (P < 0.05). Moreover, wild-type mice treated with WY 14,643 had greater mRNA abundances of enzymes involved in hepatic carnitine synthesis (4-N-trimethylaminobutyraldehyde dehydrogenase, γ-butyrobetaine dioxygenase) and increased carnitine concentrations in liver and muscle than did untreated wild-type mice (P < 0.05). Untreated PPARα−/− mice had a lower abundance of OCTN2 mRNA in liver, kidney, and small intestine and lower carnitine concentrations in plasma, liver, and kidney than did untreated wild-type mice (P < 0.05). In PPARα−/− mice, treatment with WY 14,643 did not influence mRNA abundance of OCTN2 and OCTN3 and carnitine concentrations in all tissues analyzed. The abundance of OCTN1 mRNA in all the tissues analyzed was not changed by treatment with WY 14,643 in wild-type or PPARα−/− mice. In conclusion, this study shows that transcriptional upregulation of OCTN2 and OCTN3 in tissues and of enzymes involved in hepatic carnitine biosynthesis are mediated by PPARα. It also shows that PPARα mediates changes of whole-body carnitine homeostasis in mice by upregulation of carnitine transporters and enzymes involved in carnitine synthesis.

Key words: peroxisome proliferator–activated receptor (PPAR)-α; carnitine; novel organic cation transporter (OCTN); mice

Introduction

Carnitine (l-3-hydroxy-4-N-N-N-trimethylaminobutyrate) is an essential metabolite, which has a number of indispensable functions in intermediary metabolism (1–4). Carnitine is derived from dietary sources and endogenous biosynthesis (4, 5). Carnitine biosynthesis involves a complex series of reactions (6). Lysine provides the carbon backbone of carnitine. Lysine in protein peptide linkages undergoes methylation of the ε-amino group to yield trimethyllysine (TML), which is released upon protein degradation. The released TML is further oxidized to butyrobetaine by the action of trimethyllysine dioxygenase (TMILD), 3-hydroxy-N-trimethyllysine aldolase and 4-N-trimethylaminobutyraldehyde dehydrogenase (TMABA-DH). γ-Butyrobetaine (BB) is hydroxylated by γ-butyrobetaine dioxygenase (BBD) to form carnitine. In mice, considerable activity of that enzyme is found only in the liver (7). From tissues that lack BBD, BB is excreted and transported via the circulation to the liver, where it is converted into carnitine (6).

Distribution of carnitine within the body and intracellular homeostasis of carnitine are controlled by novel organic cation transporters (OCTNs) that belong to the solute carrier 22A family, localized on the apical membrane of cells (8, 9). Three OCTNs have been identified so far: OCTN1, OCTN2, and OCTN3 (10–12). OCTNs are polyspecific; they transport several cations and L-carnitine (13, 14). OCTN1 and OCTN2 are expressed in several tissues such as kidney, intestine, skeletal muscle, heart, liver, and brain (12, 15, 16). In contrast, OCTN3 is expressed exclusively in testes, kidney, and intestine (12, 17). Among the three OCTNs, OCTN3 has the highest specificity for carnitine, and OCTN1 has the lowest (12). OCTNs operate on the intestinal absorption and renal reabsorption of carnitine and play a major role in tissue distribution by carrying carnitine into body cells. Because of its high binding affinity for carnitine and its wide expression, OCTN2 is the most important carnitine transporter. OCTN1 contributes less to carnitine transport.
transport than OCTN2 because of its low carnitine transport activity. OCTN3 may be important for carnitine uptake into testes and may contribute to reabsorption of carnitine in kidney (12). The fact that inborn or acquired defects of OCTNs lead to primary or secondary systemic carnitine deficiency demonstrates their essential role in carnitine homeostasis (9).

We have shown that treatment of rats or rat Fao hepatoma cells with clofibrate or WY 14,643, respectively, both synthetic agonists of peroxisome proliferator–activated receptor (PPAR)-α, causes an upregulation of OCTN2 and an increase in carnitine concentration in liver cells (18). We also have found that feeding oxidized fats to rats causes an upregulation of OCTN1 and OCTN2 and increases carnitine concentrations in the liver (19). As dietary oxidized fats are also able to activate PPARα in the liver (20–23), we hypothesize that transcriptional upregulation of OCTNs is mediated by PPARα, a transcription factor belonging to the nuclear hormone receptor superfamily (24). The present study aims to test this hypothesis. Therefore, we performed an experiment with mice deficient in PPARα (PPARα−/− mice) that were treated as wild-type mice with WY 14,643 and determined OCTN1 and OCTN2 mRNA abundance in the liver, skeletal muscle, kidney, small intestine, and testes. In the kidney, testes, and small intestine, we also analyzed OCTN3 mRNA abundance. To show the consequences of an alteration in OCTN gene expression on carnitine homeostasis, we also determined carnitine concentrations in these tissues. To elucidate whether the increased hepatic carnitine concentration observed in rats treated with PPARα agonists (18, 19, 25) could be due to increased carnitine biosynthesis in the liver, we also considered the mRNA abundance of enzymes involved in carnitine biosynthesis in the liver and tissue concentrations of TML and BB, which are precursors for carnitine synthesis in the liver.

Material and Methods

Materials. WY 14,643, dimethylsulfoxide (DMSO), TRIZOL reagent and SYBR Green I were purchased from Sigma-Aldrich (Steinheim, Germany). Reverse transcriptase was supplied by MBI Fermentas (St. Leon-Rot, Germany) and Taq polymerase by Promega (Mannheim, Germany). All primers were purchased from Operon Biotecnologies (Cologne, Germany).

Animals, Diets, and Sample Collection. For all experiments, we used male PPARα−/− mice (129S4/SvJae-Pparaα−/−) and corresponding wild-type control mice (129S1/SvImJ) purchased from the Jackson Laboratory (Bar Harbor, ME, USA). The mice were 11–12 weeks old with an average initial body weight (±SD) of 24.3 ± 3.2 g. Mice of each genotype were randomly assigned to two groups and kept individually in Macrolon cages in a room with controlled temperature (22°C ± 2°C), relative humidity (50%–60%), and light (12:12-hr light:dark cycle). All experimental procedures described followed established guidelines for the care and handling of laboratory animals and were approved by the council of Saxony-Anhalt. Mice in the treatment groups (wild-type mice, n = 8; PPARα−/− mice, n = 8) received 40 mg/kg WY 14,643 once daily 2 hrs after the beginning of the light cycle for 4 days. WY 14,643 was dissolved in DMSO and sunflower oil (50:50, v/v) at a final concentration of 8 mg/ml as described (26). The daily dose of WY 14,643 (in 0.12 ml) was given by gavage. Control animals (wild-type mice, n = 8; PPARα−/− mice, n = 8) were given the appropriate volume of the vehicle (DMSO and sunflower oil). All mice were fed a commercial, standard basal diet (“altromin 1324,” Altromin GmbH, Lage, Germany) with a low carnitine concentration of 22 μmol/kg. According to the declaration of the manufacturer, each kilogram of this feed contains 11.9 MJ metabolizable energy (ME), 190 g crude protein, 60 g crude fiber, 40 g crude fat, and 70 g crude ash. To standardize food intake, the mice were fed restricted amounts (4 g daily). The daily intake of ME derived from the diet and oil was 49.6 kJ. This energy intake is about 20% more than the ME requirement for maintenance, which is approximately 41 kJ ME per day (27). Water was available ad libitum from nipple drinkers during the entire experiment. On day 4 of treatment, mice received the last dose of WY 14,643 or vehicle alone and 1 g of the diet and were killed 4 hrs later by decapitation under light anesthesia with diethyl ether. Blood was collected into ethylenediaminetetraacetic acid–containing tubes, and plasma was obtained by centrifugation (1100 g, 10 mins, 4°C) and stored at −20°C. Samples of liver, kidney, skeletal muscle, and testes for RNA isolation and for determination of carnitine concentration were snap-frozen in liquid nitrogen and stored at −80°C. The small intestine was rapidly excised and washed with 0.9% NaCl (w/v), and mucosal scrapings were obtained, snap-frozen, and stored at −80°C.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) Analysis. Total RNA was isolated from tissues by using TRIZOL reagent according to the manufacturer’s protocol. The cDNA synthesis was carried out as described (28). The mRNA expression of genes was measured by real-time detection PCR using SYBR Green I and the Rotor Gene 2000 system (Corbett Research, Mortlake, Australia) as described (29). Target genes with characteristics of specific primers used are listed in Table 1. Annealing temperature for all primer pairs was 60°C; the only exception was those for β-actin, and their annealing temperature was 66°C. For determination of mRNA abundance, a threshold cycle (Ct) and amplification efficiency were obtained from each amplification curve by using the software RotorGene 4.6 (Corbett Research). Calculation of relative mRNA abundance was made by using the ΔΔCt method as previously described (30). The housekeeping gene β-actin was used for normalization. The abundance of β-actin mRNA was not influenced by the treatment of mice with WY 14,643.

Carnitine Analysis. Concentrations of free carnitine,
acetyl carnitine, TML, and BB in plasma and tissues were determined by tandem mass spectrometry using deuterated carnitine-d₃ (Larodane Fine Chemicals, Malmö, Sweden) as an internal standard (31). Fifty milligrams of freeze-dried tissues were extracted with 0.5 ml methanol:water (2:1, v/v) by homogenization (Tissue Lyzer, Qiagen, Hilden, Germany), followed by sonification for 20 mins and incubation at 50°C for 30 mins in a shaker. After centrifugation (13,000 g for 10 mins) 20 μl of the supernatant were added to 100 μl methanol containing the internal standard, and the two were mixed, incubated for 10 mins, and centrifuged (13,000 g) for 10 mins. Plasma samples were handled at 4°C in the same manner as the supernatant after tissue extraction. The final supernatants were used for quantitation of the compounds by a 1100-er series high performance-liquid chromatography (HPLC) (Agilent Technologies, Waldbronn, Germany) equipped with a Kromasil 100 column (125 mm × 2 mm, 5-μm particle size, CS-Chromatographie Service, Langenwehe, Germany) and an API 2000 liquid chromatography-tandem mass spectrometry (LC-MS/MS)-System (Applied Biosystems, Darmstadt, Germany). The analytes were ionized by positive ion (5500 V) electrospray. As eluents, methanol and a methanol:water:acetonitrile:acetic acid mixture (100:90:9:1, v/v/v/v) were used.

Statistical Analysis. Data, including the factors treatment (WY 14,643 vs. control) and genotype (PPARα/− vs. Wild-type) and the interactions between treatment and genotype, were subjected to analysis of variance (ANOVA) by using the Minitab Statistical Software (Minitab, State College, PA). When variances were heterogeneous, data were transformed into their logarithms before ANOVA. For statistically significant F values, individual means of the treatment groups were compared by Tukey’s test. Means were considered significantly different at P < 0.05.

Results

Body and Liver Weights. Treatment with WY 14,643 did not influence the final body weights of the mice; there was also no effect of genotype and treatment × genotype interaction on final body weights (mean ± SD; n = 8 per group; wild-type control, 25.1 ± 2.7 g; wild-type treated with WY 14,643, 25.2 ± 1.9 g; PPARα/− control, 23.9 ± 3.1 g; PPARα/− treated with WY 14,643, 23.2 ± 4.3 g). Liver weights of the mice were influenced by WY 14,643 treatment (P < 0.05) and genotype (P < 0.05), and there was a significant interaction between both factors (P < 0.05). In PPARα/− mice, liver weight was not influenced by treatment with WY 14,643; in wild-type mice, treatment with WY 14,643 significantly (P < 0.05) increased liver weight: the mean liver weight (±SD) per 100 g body weight was 4.02 ± 0.42 g for the wild-type control group (n = 8), 5.63 ± 0.35 g for the wild-type group treated with WY 14,643 (n = 8), 3.93 ± 0.22 g for the PPARα/− control group (n = 8), and 3.98 ± 0.42 g for the PPARα/− group treated with WY 14,643 (n = 8).

Abundance of ACO and OCTN mRNA in Tissues. To study the effect of WY 14,643 on the activation of PPARα, we determined the mRNA abundance of ACO, a PPARα target gene, in liver, skeletal muscle, kidney, testes, and small intestine. In the liver, kidney, and small intestine of wild-type mice, treatment with WY 14,643 increased the abundance of ACO mRNA (Fig. 1). Untreated PPARα/− mice had less ACO mRNA in their liver and small intestine than did untreated wild-type mice (P < 0.05); the abundance of ACO mRNA in skeletal muscle, testes, and kidney did not differ between these two groups of mice (Fig. 1). In PPARα/− mice, treatment with WY 14,643 did not increase ACO mRNA abundance in any of the tissues analyzed (Fig. 1).

In wild-type mice, OCTN2 mRNA was increased by WY 14,643 treatment in the liver, skeletal muscle, kidney, and small intestine, whereas it remained unchanged in testes

Table 1. Characteristics of the Specific Primers Used for RT-PCR Analysis

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward and reverse primers (5’ to 3’)</th>
<th>bp</th>
<th>NCBI GenBank</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACO</td>
<td>CAGGAAAGCCAGGAAAGGATGG</td>
<td>189</td>
<td>NM_015729</td>
</tr>
<tr>
<td>β-actin</td>
<td>CTTTCTGCTGATCCACAAGA</td>
<td>87</td>
<td>NM_007393</td>
</tr>
<tr>
<td>BBD</td>
<td>CAAAGCCAGGAAAGGATGG</td>
<td>200</td>
<td>BC019406</td>
</tr>
<tr>
<td>OCTN1</td>
<td>CAGGAAGAGCAAGGAAGTGG</td>
<td>188</td>
<td>NM_011396</td>
</tr>
<tr>
<td>OCTN2</td>
<td>CAGGAAGAGCAAGGAAGTGG</td>
<td>213</td>
<td>AF110417</td>
</tr>
<tr>
<td>OCTN3</td>
<td>CAGGAAGAGCAAGGAAGTGG</td>
<td>232</td>
<td>AB016257</td>
</tr>
<tr>
<td>TMLD</td>
<td>CAGGAAGAGCAAGGAAGTGG</td>
<td>245</td>
<td>NM_011396</td>
</tr>
<tr>
<td>TMABA-DH</td>
<td>CAGGAAGAGCAAGGAAGTGG</td>
<td>154</td>
<td>NM_019993</td>
</tr>
</tbody>
</table>
OCTN2 mRNA in the liver, kidney, and small intestine was less in untreated PPARα/C0/C0 mice than in untreated wild-type mice (P, 0.05; Fig. 2). In PPARα/C0/C0 mice, treatment with WY 14,643 did not increase OCTN2 mRNA abundance in any of the tissues analyzed (Fig. 2).

The abundance of OCTN1 mRNA in the liver, skeletal muscle, kidney, small intestine, and testes was not influenced by WY 14,643 treatment in either genotype (Fig. 3). Moreover, OCTN1 mRNA abundance in all tissues was similar in both genotypes (Fig. 3).

OCTN3 mRNA abundance was determined in the testes, kidney, and small intestine. The abundance of OCTN3 mRNA in the kidney and testes did not differ between untreated wild-type and untreated PPARα/C0/C0 mice (Fig. 4). In contrast, the abundance of OCTN3 mRNA in the small intestine was less in untreated PPARα/C0/C0 mice than in untreated wild-type mice (P < 0.05; Fig. 4). In wild-type mice, expression of OCTN3 in the kidney and small intestine was increased by WY 14,643 (P < 0.05), whereas it remained unchanged in PPARα/C0/C0 mice (Fig. 4). Expression of OCTN3 in the testes was not altered by WY 14,643 treatment in either genotype (Fig. 4).

mRNA Abundance of Hepatic Enzymes Involved in Carnitine Biosynthesis. Untreated wild-type mice had more TMABA-DH mRNA in their liver than did untreated PPARα/C0/C0 mice (P < 0.05); the abundance of TMLD and BBD mRNAs did not differ between these two groups of mice (Fig. 5). In wild-type mice, treatment with
WY 14,643 increased the abundance of TMLD and BBD mRNA in the liver (P ≤ 0.05), whereas the abundance of TMABA-DH mRNA remained unchanged (Fig. 5). In contrast, the mRNA abundance of all these enzymes in PPARα−/− mice was not influenced by WY 14,643 treatment (Fig. 5).

Concentrations of Carnitine, BB, and TML in Plasma and Tissues. Concentrations of carnitine, BB, and TML were determined in plasma, liver, kidney, skeletal muscle, and small intestine but not in testes (sufficient sample was not available from this tissue).

Wild-type mice treated with WY 14,643 had higher concentrations of free carnitine and acetyl carnitine in the liver and a higher concentration of free carnitine in skeletal muscle than did untreated wild-type mice. In the small intestine of wild-type mice, the concentration of free carnitine was increased by WY 14,643 treatment, whereas the concentration of acetyl carnitine was reduced (P < 0.05; Table 2). Concentrations of free carnitine and acetyl carnitine in the plasma and kidney of wild-type mice were reduced by WY 14,643 treatment. In untreated PPARα−/− mice, concentrations of free carnitine in plasma, liver, and kidney and those of acetyl carnitine in the liver and small intestine were lower than those in untreated wild-type mice (P < 0.05); concentrations of free carnitine in skeletal muscle and small intestine and concentrations of acetyl carnitine in plasma, kidney, and skeletal muscle were similar in those two groups (Table 2). Moreover, treatment of PPARα−/− mice with WY 14,643 did not cause any alteration in plasma and tissue carnitine concentrations.

Figure 2. Effect of WY 14,643 on OCTN2 mRNA in the liver, kidney, skeletal muscle, small intestine, and testes of wild-type (+/+) and PPARα−/− mice. Mice were treated orally with 40 mg/kg of WY 14,643 for 4 days. Control mice received the appropriate volume of vehicle (sunflower oil and DMSO). Total RNA was extracted from tissues, and relative mRNA abundance was determined by real-time detection RT-PCR analysis using β-actin mRNA abundance for normalization. Values are the means ± SD (n = 8). Means with unlike letters differ (P ≤ 0.05). The significance of factors for particular tissues was the following: liver, for treatment P ≤ 0.05, for genotype P ≤ 0.05, and for treatment × genotype P ≤ 0.05; kidney, for treatment P ≤ 0.05, for genotype P ≤ 0.05, and for treatment × genotype P ≤ 0.05; skeletal muscle, for treatment P ≤ 0.05 and for genotype P ≤ 0.05; small intestine, for treatment P ≤ 0.05 and for genotype P ≤ 0.05. The P values for treatment and for genotype in the testes and for treatment × genotype in the skeletal muscle, small intestine, and testes did not reach significance.
Wild-type mice treated with WY 14,643 had lower concentrations of BB, the precursor of carnitine, in plasma, liver, and kidney than did untreated wild-type mice (P < 0.05; Table 2). In contrast, BB concentrations in skeletal muscle and small intestine did not differ between treated and untreated wild-type mice (Table 2). In PPARα−/− mice, treatment with WY 14,643 did not change plasma and tissue BB concentrations (Table 2). In untreated PPARα−/− mice, concentrations of BB in the liver, kidney, and small intestine were similar to those in untreated wild-type mice; in contrast, BB concentrations in plasma and skeletal muscle were higher in untreated PPARα−/− mice than in untreated wild-type mice (P < 0.05; Table 2).

Concentrations of TML in plasma and tissues were not different between wild-type mice and PPARα−/− mice, and they were not influenced by WY 14,643 treatment (Table 2).

Discussion

To investigate the hypothesis that transcription of OCTNs is controlled by PPARα, we treated wild-type and PPARα−/− mice with WY 14,643. To demonstrate PPARα activation, we determined the mRNA abundance of ACO, a gene that possesses a PPAR response element (32). The finding that ACO mRNA was increased in the liver, kidney, and small intestine is therefore indirect proof of PPARα activation in these tissues of wild-type mice treated with WY 14,643. The fact that there was no upregulation of ACO in the testes and skeletal muscle by WY 14,643 may be due to the low expression of PPARα in these tissues (33). ACO mRNA abundance was not influenced in any tissue of PPARα−/− mice by WY 14,643; this result confirms that there was no activation of PPARα because of the lack of expression in those mice. Similarly, hepatomegaly indicative of peroxisome proliferation (34) was observed in wild-
type mice treated with WY 14,643 but not in PPARα−/− mice treated with WY 14,643.

The finding that treatment with WY 14,643 increased OCTN2 mRNA in the liver, muscle, kidney, and small intestine of wild-type mice but not of PPARα−/− mice demonstrates that transcriptional upregulation of OCTN2 is mediated by PPARα. The observation that OCTN2 was not upregulated in the testes may be due to the fact that WY 14,643 caused no activation of PPARα in this tissue as assessed by the response of ACO mRNA abundance. It is furthermore shown that OCTN3 mRNA in the kidney and small intestine is increased by WY 14,643 in wild-type mice but not in PPARα−/− mice; this result demonstrates that transcriptional upregulation of OCTN3 is also mediated by PPARα. The finding that OCTN3 was not upregulated in the testes of wild-type mice treated with WY 14,643 may be due to the lack of PPARα activation in that tissue. In contrast, OCTN1 was not upregulated in any tissue of wild-type mice; this finding indicates that its transcription is not influenced by PPARα activation. The observation that OCTN1 was not upregulated by WY 14,643 in wild-type mice is in accordance with our previous study in which treatment of Fao rat hepatoma cells with WY 14,643 did not influence OCTN1 mRNA abundance (18).

The present study moreover shows that WY 14,643 treatment upregulates the transcription of enzymes involved in hepatic biosynthesis, TMABA-DH and BBD, in wild-type mice but not in PPARα−/− mice. This result shows that transcriptional upregulation of enzymes involved in hepatic carnitine synthesis is also mediated by PPARα.

The present study confirms results of recent studies (18, 19, 25, 35) in showing that treatment with PPARα agonists increases the carnitine concentration in the liver of rodents. The present study moreover shows that treatment with a PPARα agonist increases carnitine concentration in skeletal muscle, which serves as a carnitine storage site in the body. The reason for increased carnitine concentrations in tissue cannot be clarified by this study. The liver has a very high capacity to convert BB to carnitine. Therefore, the availability of the carnitine precursors TML and BB is considered to be rate-limiting for carnitine biosynthesis (36). Paul et al. (27) proposed that clofibrate treatment stimulates hepatic carnitine biosynthesis by increasing the availability of TML. In contrast to that study, TML concentrations in the liver and other tissues remained completely unchanged by treatment with WY 14,643. The finding that the concentration of BB in the liver of wild-type mice was reduced by WY 14,643 despite unchanged TML concentrations could however indicate that more BB was converted to carnitine in the liver of these animals. In the present study we did not determine protein concentrations or transport activities of OCTN2. However, the finding that the transcription of OCTN2 was strongly enhanced in the liver of wild-type mice treated with WY 14,643 suggests that increased

Figure 4. Effect of WY 14,643 on OCTN3 mRNA abundance in the kidney, small intestine, and testes of wild-type (+/+ and PPARα−/− mice. Mice were treated orally with 40 mg/kg of WY 14,643 for 4 days. Control mice received the appropriate volume of vehicle (sunflower oil and DMSO). Total RNA was extracted from tissues, and relative mRNA abundance was determined by real-time detection RT-PCR analysis using β-actin mRNA abundance for normalization. Values are the means ± SD (n = 8). Means with unlike letters differ (P < 0.05). The significance of factors for particular tissues was the following: kidney, for treatment P < 0.05, for genotype P < 0.05, and for treatment × genotype P < 0.05; and small intestine, for treatment P < 0.05, for genotype P < 0.05, and for treatment × genotype P < 0.05. The P values for treatment, genotype, and treatment × genotype in the testes did not reach significance.
delivery of carnitine from blood to the liver may contribute to increased hepatic carnitine concentrations in these mice. As muscle is not able to produce carnitine (7), the increased carnitine concentration in skeletal muscle may be primarily the result of an increased uptake of carnitine from the blood by OCTN2. Reduced concentrations of carnitine in plasma of wild-type mice treated with WY 14,643 may be the result of increased uptake of carnitine into tissues. The reduced carnitine concentration in the kidney of wild-type mice treated with WY 14,643 cannot be explained by the data of this study. OCTNs in the kidney have the ability to reabsorb carnitine from urine (12). As OCTN2 and OCTN3 were upregulated in the kidney, it is assumed that reabsorption of carnitine in the kidney is stimulated by PPARα activation. However, as the tubular reabsorption rate of carnitine in humans and rodents is normally in excess of 90% (37–39), there is less potential for increasing the amount of carnitine reabsorbed from the tubules by PPARα activation. Therefore, increased expression of OCTNs in the kidney probably contributed less to increased tissue carnitine concentrations. Intestinal OCTN2 and OCTN3 are involved in the absorption of carnitine from the diet (17, 40). The observation that the abundance of these carnitine transporter mRNAs in the small intestine was increased in wild-type mice by WY 14,643 treatment suggests that dietary absorption of carnitine may have improved. However, because the carnitine concentration of the diet used in this study was very low, we assume that an increase in the rate of intestinal carnitine absorption should have had less effect on whole-body carnitine homeostasis in this study.

During the preparation of the revised version of this manuscript, a study by van Vlies et al. (41) was published, and in this study they also investigated the effect of WY 14,643 on activities of enzymes involved in hepatic carnitine synthesis, expression of OCTN2, and concentrations of TML, BB, and carnitine in plasma and various tissues of wild-type and PPARα−/− mice. Their study showed that WY 14,643 increases hepatic activity of BBD and OCTN2 mRNA abundance in the liver of wild-type mice but not in PPARα−/− mice. It furthermore revealed that carnitine concentrations in plasma, liver, kidney, and heart are increased by WY 14,643 in wild-type mice but not in PPARα−/− mice. The authors of that study concluded that WY 14,643 treatment increases carnitine concentrations by enhanced carnitine biosynthesis and enhanced import of carnitine into cells. In the study by van Vlies et al. (41), it was also shown that similar effects occur in rats during fasting. The findings of that study agree well with those of the present study and support the hypothesis that transcription of OCTN2 and enzymes of hepatic carnitine biosynthesis is regulated by PPARα.

The observed upregulation of OCTN2 in tissues due to activation of PPARα may be relevant not only to carnitine homeostasis but also to tissue distribution and intestinal absorption of other compounds. OCTN2 is polyspecific and is able to bind other monovalent cations and various drugs such as verapamil, spironolactone, and mildronate (15, 42–46). The effect of PPARα activation on such compounds therefore deserves further investigation.

In conclusion, the present study shows that transcriptional upregulation of OCTN2 and OCTN3 as well as hepatic enzymes of carnitine synthesis is mediated by...
<table>
<thead>
<tr>
<th>Treatment</th>
<th>Control</th>
<th>WY 14,643</th>
<th>Control</th>
<th>WY 14,643</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+/-</td>
<td>-/-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free carnitine (µmol/l)</td>
<td>48 ± 4</td>
<td>38 ± 6</td>
<td>29 ± 8</td>
<td>26 ± 4</td>
</tr>
<tr>
<td>Acetyl carnitine (µmol/l)</td>
<td>25 ± 4</td>
<td>19 ± 3</td>
<td>19 ± 6</td>
<td>23 ± 5</td>
</tr>
<tr>
<td>TML (µmol/l)</td>
<td>11 ± 1</td>
<td>11 ± 1</td>
<td>12 ± 1</td>
<td>12 ± 1</td>
</tr>
<tr>
<td>BB (µmol/l)</td>
<td>1.3 ± 0.3</td>
<td>0.6 ± 0.2</td>
<td>1.8 ± 0.2</td>
<td>1.5 ± 0.2</td>
</tr>
<tr>
<td>Liver</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free carnitine (nmol/g)</td>
<td>483 ± 57</td>
<td>1202 ± 94</td>
<td>229 ± 53</td>
<td>254 ± 52</td>
</tr>
<tr>
<td>Acetyl carnitine (nmol/g)</td>
<td>3.6 ± 0.9</td>
<td>11 ± 4</td>
<td>2.0 ± 0.9</td>
<td>1.4 ± 0.5</td>
</tr>
<tr>
<td>TML (nmol/g)</td>
<td>5.7 ± 1.0</td>
<td>6.3 ± 0.8</td>
<td>5.3 ± 1.5</td>
<td>5.1 ± 1.7</td>
</tr>
<tr>
<td>BB (nmol/g)</td>
<td>7.4 ± 1.9</td>
<td>4.7 ± 1.5</td>
<td>7.7 ± 1.8</td>
<td>6.3 ± 0.9</td>
</tr>
<tr>
<td>Kidney</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free carnitine (nmol/g)</td>
<td>498 ± 49</td>
<td>371 ± 46</td>
<td>279 ± 44</td>
<td>299 ± 41</td>
</tr>
<tr>
<td>Acetyl carnitine (nmol/g)</td>
<td>20 ± 5</td>
<td>14 ± 3</td>
<td>16 ± 4</td>
<td>16 ± 1</td>
</tr>
<tr>
<td>TML (nmol/g)</td>
<td>14 ± 1</td>
<td>14 ± 2</td>
<td>15 ± 3</td>
<td>15 ± 3</td>
</tr>
<tr>
<td>BB (nmol/g)</td>
<td>12 ± 2</td>
<td>5.2 ± 0.8</td>
<td>13 ± 2</td>
<td>12 ± 1</td>
</tr>
<tr>
<td>Skeletal muscle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free carnitine (nmol/g)</td>
<td>134 ± 17</td>
<td>160 ± 21</td>
<td>128 ± 20</td>
<td>130 ± 23</td>
</tr>
<tr>
<td>Acetyl carnitine (nmol/g)</td>
<td>80 ± 7</td>
<td>86 ± 8</td>
<td>68 ± 14</td>
<td>66 ± 7</td>
</tr>
<tr>
<td>TML (nmol/g)</td>
<td>21 ± 9</td>
<td>24 ± 6</td>
<td>34 ± 10</td>
<td>27 ± 8</td>
</tr>
<tr>
<td>BB (nmol/g)</td>
<td>4.0 ± 0.5</td>
<td>3.3 ± 0.5</td>
<td>7.3 ± 1.2</td>
<td>7.5 ± 1.1</td>
</tr>
<tr>
<td>Small intestine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free carnitine (nmol/g)</td>
<td>93 ± 23</td>
<td>120 ± 22</td>
<td>90 ± 22</td>
<td>92 ± 23</td>
</tr>
<tr>
<td>Acetyl carnitine (nmol/g)</td>
<td>18 ± 6</td>
<td>8.9 ± 4.2</td>
<td>9.5 ± 4.1</td>
<td>9.1 ± 3.1</td>
</tr>
<tr>
<td>TML (nmol/g)</td>
<td>28 ± 7</td>
<td>24 ± 8</td>
<td>23 ± 7</td>
<td>22 ± 7</td>
</tr>
<tr>
<td>BB (nmol/g)</td>
<td>29 ± 11</td>
<td>27 ± 8</td>
<td>34 ± 13</td>
<td>36 ± 16</td>
</tr>
</tbody>
</table>

Values are the means ± SD (8 per group).
Significant effect of treatment (P < 0.05).
Significant effect of genotype (P < 0.05).
Means with unlike letters differ (P < 0.05).

PPARα in mice. Through regulation of these enzymes and transporters, PPARα is involved in the regulation of carnitine homeostasis.

We thank F. Hirche for technical support in the measurement of carnitine concentrations.

multifunctionality of carnitine/organic cation transporter OCTN2. Mol
15. Wu X, Huang W, Prasad PD, Seth P, Rajan DP, Leibach FH, Chen J,
Conway SJ, Ganapathy V. Functional characteristics and tissue
distribution pattern of organic cation transporter 2 (OCTN2), an
organic cation/carnitine transporter. J Pharmacol Exp Ther
distribution and renal developmental changes in rat organic cation
17. Durán JM, Peral MJ, Calonge ML, Ilundain AA. OCTN3: A Na+-
independent t-carnitine transporter in enterocytes basolateral
PPARα agonists up-regulate organic cation transporters in rat liver
19. Koch A, König B, Luci S, Stangl GI, Eder K. Dietary oxidized fat up-
regulates expression of organic cation transporters in liver and small
intestine and increases the carnitine concentration in the liver of rats. Br
20. Chao P-M, Chao C-Y, Lin F-J, Huang C-J. Oxidized frying oil up-
regulates hepatic acyl-CoA oxidase and cytochrome P450 4A1 genes in
21. Chao P-M, Hsu SC, Lin F-J, Li YJ, Huang C-J. The up-regulation of
hepatic acyl-CoA oxidase and cytochrome P450 4A1 mRNA
expression by dietary oxidized frying oil is comparable between male
22. Sülzle A, Hirche F, Eder K. Thermally oxidized dietary fat upregulated
the expression of target genes of PPAR alpha in rat liver. J Nutr
24. Koch A, König B, Luci S, Stangl GI, Eder K. Dietary oxidized fat up-
regulates expression of organic cation transporters in liver and small
intestine and increases the carnitine concentration in the liver of rats. Br
25. Paul HS, Adibi SA. Paradoxical effects of clofibrate on liver and
muscle metabolism in rats. Induction of myotonia and alteration of fatty
distribution and renal developmental changes in rat organic cation
27. Durán JM, Peral MJ, Calonge ML, Ilundain AA. OCTN3: A Na+-
independent t-carnitine transporter in enterocytes basolateral