Tropanalkaloidbiosynthese in Solanum-Arten

Dissertation
zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der
Naturwissenschaftlichen Fakultät I
Biowissenschaften
der Martin-Luther-Universität Halle-Wittenberg

von
Frau Dipl.-Pharm. Anna-Carolin Freydank
geb. am 02.12.1977 in Lutherstadt Wittenberg

Gutachterin bzw. Gutachter:

1. Prof. Dr. Birgit Dräger
2. Prof. Dr. Ludger Wessjohann
3. Prof. Dr. Maike Petersen

Halle/Saale, den 17.12.2008

urn:nbn:de:gbv:3-000015037
[http://nbn-resolving.de/urn/resolver.pl?urn=nbn%3Ade%3Agbv%3A3-000015037]
Inhaltsverzeichnis

Abkürzungsverzeichnis .. a
Abbildungsverzeichnis ... d
Tabellenverzeichnis .. e
Publikationen und wissenschaftliche Beiträge ... f

A Einleitung

A 1 Calystegine .. 1
A 1.1 Struktur und Wirkung der Calystegine ... 1
A 1.2 Verbreitung der Calystegine ... 3
A 1.3 Physiologische Bedeutung der Calystegine ... 4
A 2 Calystegin- und Tropanalkaloidbiosynthese ... 5
A 2.1 Regulation und Beeinflussung der Biosynthese ... 7
A 3 Modellierung von Proteinen ... 9
A 4 Aufgabenstellung .. 11

B Materialien und Methoden

B 1 Materialien .. 12
B 1.1 Pflanzenmaterial und Wurzelkulturen .. 12
B 1.2 Bakterien ... 12
B 1.3 Vektoren ... 13
B 1.4 Chemikalien und Standards ... 13
B 1.5 Puffer, Standardlösungen und Medien ... 13
B 1.6 Enzyme und Kits .. 14
B 1.7 Oligonukleotide und Sequenzierungen ... 14
B 2 Methoden ... 16
B 2.1 Analytische Methoden .. 16
B 2.1.1 Extraktion und Derivatisierung von Calysteginen ... 16
B 2.1.2 Extraktion von Intermediaten der Calysteginsynthese ... 16
B 2.1.3 Isolierung und Derivatisierung der Polyamine .. 17
B 2.1.4 Synthese von \[^{13}C\text{-methyl}\]-Tropinon .. 17
B 2.1.5 Applikation von \[^{13}C\text{-methyl}\]-Tropinon an \(S.\ dulcamara\) Wurzelkulturen 19
B 2.1.6 Extraktion von Aminosäuren und Intermediaten ... 19
B 2.1.7 Reinigung und Derivatisierung der Aminosäuren .. 19
B 2.1.8 Gaschromatographie (GC) .. 20
B 2.1.9 Gaschromatographie und Massenspektrometrie (GC-MS) 21
B 2.1.10 Hochdruckflüssigkeitschromatographie (HPLC) ... 21
B 2.1.11 Dünnsschichtchromatographie ... 22
B 2.1.12 NMR .. 23
B 2.2 Molekularbiologische Methoden .. 23
B 2.2.1 Isolierung von Gesamt-RNA aus Pflanzengewebe .. 23
B 2.2.2 cDNA-Synthese ... 24
B 2.2.3 PCR .. 24
B 2.2.4 Vervollständigung der cDNA Sequenzen ... 25
B 2.2.5 Kolonie-PCR ... 26
B 2.2.6 Klonierung ... 26
B 2.2.7 Rekombinante Expression in \(E.\ coli\) .. 26
B 2.3 Biochemische Methoden .. 27
B 2.3.1 Quantifizierung von Proteinen .. 27
B 2.3.2 Proteinextraktion aus Pflanzenmaterial ... 27
B 2.3.3 Proteinextraktion aus Bakterien ... 28
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Titel</th>
<th>Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>B 2.3.4</td>
<td>SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE)</td>
<td>28</td>
</tr>
<tr>
<td>B 2.3.5</td>
<td>Enzymmassay zur Bestimmung der Tropinonreduktase-Aktivität</td>
<td>29</td>
</tr>
<tr>
<td>B 2.3.6</td>
<td>Reinigung und Charakterisierung der rekombinanten Enzyme</td>
<td>30</td>
</tr>
<tr>
<td>B 2.4</td>
<td>in silico Methoden</td>
<td>32</td>
</tr>
<tr>
<td>B 2.4.1</td>
<td>Datenbanken</td>
<td>32</td>
</tr>
<tr>
<td>B 2.4.2</td>
<td>Komparative Modellierung</td>
<td>33</td>
</tr>
<tr>
<td>B 2.4.3</td>
<td>in silico Screening</td>
<td>34</td>
</tr>
<tr>
<td>B 2.4.4</td>
<td>Dockingstudien</td>
<td>35</td>
</tr>
<tr>
<td>C Ergebnisse</td>
<td>Tropanalkaloide und Tropinonreduktase-Aktivität in Solanum-Arten</td>
<td>36</td>
</tr>
<tr>
<td>C 1</td>
<td>Tropanalkaloide und Tropinonreduktase-Aktivität in Solanum-Arten</td>
<td>36</td>
</tr>
<tr>
<td>C 1.1</td>
<td>Calystegin-Akkumulation</td>
<td>36</td>
</tr>
<tr>
<td>C 1.2</td>
<td>Akkumulation der Intermediate der Calysteginbiosynthese</td>
<td>39</td>
</tr>
<tr>
<td>C 1.3</td>
<td>Tropinonreduktase-Aktivität</td>
<td>40</td>
</tr>
<tr>
<td>C 1.4</td>
<td>Wurzelkulturen</td>
<td>42</td>
</tr>
<tr>
<td>C 1.5</td>
<td>Tropinonumsatz in Pflanzengeweben und Wurzelkulturen</td>
<td>43</td>
</tr>
<tr>
<td>C 2</td>
<td>Tropinonreduktase II – Solanum dulcamara</td>
<td>44</td>
</tr>
<tr>
<td>C 2.1</td>
<td>Isolierung einer trII homologen cDNA Sequenz aus S. dulcamara</td>
<td>44</td>
</tr>
<tr>
<td>C 2.2</td>
<td>Überexpression und Reinigung der Sd-TRII</td>
<td>45</td>
</tr>
<tr>
<td>C 2.3</td>
<td>Biochemische Charakterisierung und Modellierung der Sd-TRII</td>
<td>46</td>
</tr>
<tr>
<td>C 2.3.1</td>
<td>Charakterisierung der Sd-TRII mit C-terminalem His-Tag (C-Sd-TRII)</td>
<td>46</td>
</tr>
<tr>
<td>C 2.3.2</td>
<td>Charakterisierung der Sd-TRII mit N-terminalem His-Tag (N-Sd-TRII)</td>
<td>48</td>
</tr>
<tr>
<td>C 2.3.3</td>
<td>Entwicklung der Modellstruktur</td>
<td>50</td>
</tr>
<tr>
<td>C 2.4</td>
<td>Liganden-Dockingstudien mit in vitro getesteten Substanzen</td>
<td>52</td>
</tr>
<tr>
<td>C 2.5</td>
<td>in silico Screening zur Ligandensuche</td>
<td>54</td>
</tr>
<tr>
<td>C 2.6</td>
<td>Inhibitor Enzymtests in vitro</td>
<td>56</td>
</tr>
<tr>
<td>C 2.7</td>
<td>Inhibitor-Applikation an Wurzelkulturen von S. dulcamara</td>
<td>58</td>
</tr>
<tr>
<td>C 3</td>
<td>Tropinonreduktase I</td>
<td>61</td>
</tr>
<tr>
<td>C 3.1</td>
<td>Isolierung trI homologer cDNA-Sequenzen aus S. dulcamara und S. nigrum</td>
<td>61</td>
</tr>
<tr>
<td>C 3.2</td>
<td>Überexpression, Reinigung und Charakterisierung der TRI</td>
<td>61</td>
</tr>
<tr>
<td>C 4</td>
<td>Putrescin-N-methyltransferase</td>
<td>64</td>
</tr>
<tr>
<td>C 4.1</td>
<td>Analytik der Polymine in S. dulcamara</td>
<td>64</td>
</tr>
<tr>
<td>C 4.2</td>
<td>Isolierung einer pmt homologen Sequenz aus S. dulcamara</td>
<td>65</td>
</tr>
<tr>
<td>C 4.3</td>
<td>Überexpression und Reinigung Sd-PMT</td>
<td>67</td>
</tr>
<tr>
<td>C 4.4</td>
<td>Biochemische Charakterisierung der Sd-PMT</td>
<td>67</td>
</tr>
<tr>
<td>C 5</td>
<td>13C-methyl]-Tropinon Umsatz in S. dulcamara Wurzelkulturen</td>
<td>69</td>
</tr>
<tr>
<td>D Diskussion</td>
<td>Calysteginakkumulation in Solanum-Arten</td>
<td>72</td>
</tr>
<tr>
<td>D 1</td>
<td>Calysteginakkumulation in Solanum-Arten</td>
<td>72</td>
</tr>
<tr>
<td>D 2</td>
<td>Tropinonreduktase-Aktivität in Solanum-Arten</td>
<td>73</td>
</tr>
<tr>
<td>D 3</td>
<td>Tropinonreduktase I in S. dulcamara und S. nigrum</td>
<td>74</td>
</tr>
<tr>
<td>D 4</td>
<td>Tropinonreduktase II in Solanum dulcamara</td>
<td>75</td>
</tr>
<tr>
<td>D 4.1</td>
<td>Katalytische Eigenschaften der Sd-TRII mit C-terminalem His-Tag (C-Sd-TRII)</td>
<td>75</td>
</tr>
<tr>
<td>D 4.2</td>
<td>Modell der Sd-TRII</td>
<td>77</td>
</tr>
<tr>
<td>D 4.3</td>
<td>Katalytische Eigenschaften der Sd-TRII mit N-terminalem His-Tag (N-Sd-TRII)</td>
<td>78</td>
</tr>
<tr>
<td>D 4.4</td>
<td>Liganden der Sd-TRII</td>
<td>79</td>
</tr>
<tr>
<td>D 5</td>
<td>Demethylierung – ein Biosyntheseschritt zu den Calysteginen</td>
<td>80</td>
</tr>
<tr>
<td>D 6</td>
<td>Putrescin-N-methyltransferase – Verbindung von Primär und Sekundärstoffwechsel</td>
<td>82</td>
</tr>
<tr>
<td>D 6.1</td>
<td>Polyamine</td>
<td>82</td>
</tr>
<tr>
<td>D 6.2</td>
<td>Isolierung einer Putrescin-N-methyltransferase (PMT) aus S. dulcamara</td>
<td>83</td>
</tr>
<tr>
<td>D 6.3</td>
<td>Katalytische Eigenschaften der Sd-PMT</td>
<td>83</td>
</tr>
<tr>
<td>D 7</td>
<td>Ausblick</td>
<td>85</td>
</tr>
<tr>
<td>E Zusammenfassung</td>
<td></td>
<td>87</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

F Literaturverzeichnis ... 89

G Anhang .. 104
 G 1 Calystegin- und Intermediat-Akkumulation .. 104
 G 1.1 Calystegin-Akkumulation ... 104
 G 1.2 Intermediat-Akkumulation .. 105
 G 1.3 Wurzelkulturen S. dulcamara .. 106
 G 2 Kinetische Parameter und Tropinonreduktase-Aktivitätswerte 106
 G 3 Vektorkarten ... 108
 G 4 cDNA-Sequenzen aus S. dulcamara und S. nigrum .. 109
 G 5 Substanzen aus der Ligandensuche ... 112
 Danksagung .. 127
 Lebenslauf ... 129
<table>
<thead>
<tr>
<th>Abkürzungenverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
</tr>
<tr>
<td>3D</td>
</tr>
<tr>
<td>(18S) rRNA</td>
</tr>
<tr>
<td>Histag</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>Abb.</td>
</tr>
<tr>
<td>A. belladonna, Ab</td>
</tr>
<tr>
<td>ADC</td>
</tr>
<tr>
<td>APS</td>
</tr>
<tr>
<td>Aqua dest.</td>
</tr>
<tr>
<td>AS</td>
</tr>
<tr>
<td>ATP</td>
</tr>
<tr>
<td>BLAST</td>
</tr>
<tr>
<td>BLOSUM</td>
</tr>
<tr>
<td>bp (kbp)</td>
</tr>
<tr>
<td>BSA</td>
</tr>
<tr>
<td>bzw.</td>
</tr>
<tr>
<td>°C</td>
</tr>
<tr>
<td>Cal</td>
</tr>
<tr>
<td>C. sepium, Cs</td>
</tr>
<tr>
<td>CDNA</td>
</tr>
<tr>
<td>CO2</td>
</tr>
<tr>
<td>D. innoxia, Di</td>
</tr>
<tr>
<td>D. stramonium, Ds</td>
</tr>
<tr>
<td>Da (kDa)</td>
</tr>
<tr>
<td>DEPC</td>
</tr>
<tr>
<td>DFMA</td>
</tr>
<tr>
<td>DNA</td>
</tr>
<tr>
<td>DMF</td>
</tr>
<tr>
<td>DMSO</td>
</tr>
<tr>
<td>DNase</td>
</tr>
<tr>
<td>dNTP</td>
</tr>
<tr>
<td>DNTB</td>
</tr>
<tr>
<td>EC</td>
</tr>
<tr>
<td>EDTA</td>
</tr>
<tr>
<td>EMBL</td>
</tr>
<tr>
<td>E. coli</td>
</tr>
<tr>
<td>et al.</td>
</tr>
<tr>
<td>eV</td>
</tr>
<tr>
<td>FID</td>
</tr>
<tr>
<td>FM</td>
</tr>
<tr>
<td>g (ng, μg, mg)</td>
</tr>
<tr>
<td>Gamborg`s B5</td>
</tr>
<tr>
<td>GC</td>
</tr>
<tr>
<td>GC-MS</td>
</tr>
<tr>
<td>GOLD</td>
</tr>
<tr>
<td>h</td>
</tr>
<tr>
<td>H. muticus</td>
</tr>
<tr>
<td>H. niger, Hn</td>
</tr>
<tr>
<td>H6H</td>
</tr>
<tr>
<td>HMDS</td>
</tr>
<tr>
<td>HPLC</td>
</tr>
<tr>
<td>HSQC</td>
</tr>
<tr>
<td>IC50</td>
</tr>
<tr>
<td>IPTG</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>kat (μkat, nkat)</td>
</tr>
<tr>
<td>Km</td>
</tr>
<tr>
<td>kPa</td>
</tr>
<tr>
<td>Abkürzung</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>I (μl, ml)</td>
</tr>
<tr>
<td>LB</td>
</tr>
<tr>
<td>L. esculentum, Le</td>
</tr>
<tr>
<td>LuxS</td>
</tr>
<tr>
<td>m</td>
</tr>
<tr>
<td>M (μM, mM)</td>
</tr>
<tr>
<td>MCS</td>
</tr>
<tr>
<td>min</td>
</tr>
<tr>
<td>MLU</td>
</tr>
<tr>
<td>MOE</td>
</tr>
<tr>
<td>MPO</td>
</tr>
<tr>
<td>mRNA</td>
</tr>
<tr>
<td>MS</td>
</tr>
<tr>
<td>MS</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>N. benthamiana</td>
</tr>
<tr>
<td>N. plumbaginifolia</td>
</tr>
<tr>
<td>N. sylvestris</td>
</tr>
<tr>
<td>N. tabacum</td>
</tr>
<tr>
<td>NaCl</td>
</tr>
<tr>
<td>NADP⁺</td>
</tr>
<tr>
<td>NADPH</td>
</tr>
<tr>
<td>Ni-NTA</td>
</tr>
<tr>
<td>NMR</td>
</tr>
<tr>
<td>ODC</td>
</tr>
<tr>
<td>ORF</td>
</tr>
<tr>
<td>PAGE</td>
</tr>
<tr>
<td>PCR</td>
</tr>
<tr>
<td>PDB</td>
</tr>
<tr>
<td>Pfu-Polymerase</td>
</tr>
<tr>
<td>pH</td>
</tr>
<tr>
<td>P. divaricata, Pd</td>
</tr>
<tr>
<td>PMT</td>
</tr>
<tr>
<td>PND</td>
</tr>
<tr>
<td>ppm</td>
</tr>
<tr>
<td>PROSA II</td>
</tr>
<tr>
<td>PVP</td>
</tr>
<tr>
<td>RACE</td>
</tr>
<tr>
<td>RNA</td>
</tr>
<tr>
<td>RNAi</td>
</tr>
<tr>
<td>RNase</td>
</tr>
<tr>
<td>rpm</td>
</tr>
<tr>
<td>RT-PCR</td>
</tr>
<tr>
<td>S. dimidiatum</td>
</tr>
<tr>
<td>S. kwebense</td>
</tr>
<tr>
<td>S. nigrum, Sn</td>
</tr>
<tr>
<td>S. dulcamara, Sd</td>
</tr>
<tr>
<td>S. maricatum</td>
</tr>
<tr>
<td>S. melongena</td>
</tr>
<tr>
<td>S. sodomaeum</td>
</tr>
<tr>
<td>S. tuberosum, St</td>
</tr>
<tr>
<td>S. nodiflorum</td>
</tr>
<tr>
<td>S. sisymbriifolium</td>
</tr>
<tr>
<td>S. rantonnetti</td>
</tr>
<tr>
<td>S. mitlense</td>
</tr>
<tr>
<td>SAH</td>
</tr>
<tr>
<td>SAM</td>
</tr>
<tr>
<td>SDR</td>
</tr>
<tr>
<td>SDS</td>
</tr>
<tr>
<td>sec</td>
</tr>
<tr>
<td>SPDS</td>
</tr>
<tr>
<td>Tab.</td>
</tr>
<tr>
<td>Abkürzung</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>Taq-Polymerase</td>
</tr>
<tr>
<td>TB-Medium</td>
</tr>
<tr>
<td>TBON</td>
</tr>
<tr>
<td>TBOL</td>
</tr>
<tr>
<td>TEMED</td>
</tr>
<tr>
<td>TM</td>
</tr>
<tr>
<td>Tm</td>
</tr>
<tr>
<td>TR</td>
</tr>
<tr>
<td>TRI</td>
</tr>
<tr>
<td>TRII</td>
</tr>
<tr>
<td>Tris</td>
</tr>
<tr>
<td>U</td>
</tr>
<tr>
<td>UDP</td>
</tr>
<tr>
<td>UV</td>
</tr>
<tr>
<td>V</td>
</tr>
<tr>
<td>V/V</td>
</tr>
<tr>
<td>Vmax</td>
</tr>
<tr>
<td>Vol</td>
</tr>
<tr>
<td>z.B.</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abb. A-1: Strukturformel der Calystegine

Abb. A-2: Calystegin- und Tropanalkaloidbiosynthese

Abb. B-1: Reaktionsschema zur Synthese von [13C-methyl]-Tropinon

Abb. B-2: Syntheseapparatur zur Darstellung von [13C-methyl]-Tropinon

Abb. B-3: Verwendete Substrate und Substratanaloga

Abb. B-4: Schematische Darstellung der zwei definierten Pharmakophore

Abb. C-1: Calystegingehalt in den Solanum-Arten S. muricatum und S. dulcamara

Abb. C-4: Intermediatgehalt in den Solanum-Arten S. sisymbriifolium und S. nigrum

Abb. C-5: Tropinonreduktase-Aktivität in S. nigrum

Abb. C-6: a) Gesamtcalytengelgelhalt, b) Tropinonreduktase-Aktivität, c) Intermediatgehalt

Abb. C-7: Vergleich der TRI-Proteinssequenzen von S. dulcamara (Sd-TRI, AM947940), S. tuberosum (St-TRI, AJ245634), H. niger (Hn-TRI, L20485) und D. stramonium (Ds-TRI, L20474)

Abb. C-8: SDS-Gele nach Reinigung der Sd-TRI mit Nickelaffinitätschromatographie

Abb. C-9: Bestimmung des pH-Optimums der Tropinonreduktion durch C-Sd-TRI

Abb. C-10: Bestimmung des pH-Optimums der Tropinonreduktion durch N-Sd-TRI

Abb. C-11: Molare katalytische Aktivität der C-Sd-TRI und N-Sd-TRI mit verschiedenen Substratanaloga

Abb. C-12: a und c Modelle der Sd-TRI ohne His-Tag, b und d Modelle der Sd-TRI mit His-Tag und weiteren 5 Aminosäuren am C-Terminus

Abb. C-13: Korrelation zwischen theoretisch und experimentell bestimmten Substr-Affinitäten der N-Sd-TRI

Abb. C-14: Pharmakophore erstellt im Programm MOE aus Tropinon im aktiven Zentrum des Sd-TRI

Abb. C-15: Schematische Darstellung der Ligandensuche

Abb. C-16: Inhibitoren getestet

Abb. C-17: Konzentrationsabhängige Hemmung der Sd-TRI durch die Substanzen Nr.2 (a) und Nr. 4 (b)

Abb. C-18: Strukturformeln der Substanzen Nr. 2 und Nr. 4

Abb. C-19: Aktive Zentrum der Sd-TRI mit den gedockten Substanzen: a) Nr. 2; b) Nr. 4; c) Tropinon

Abb. C-20: S. dulcamara Wurzelkultur nach 3 Wochen unter verschiedenen Kultivierungsbedingungen

Abb. C-21: Frisch- und Trockenmasse nach 7 Wochen Kultivierung der S. dulcamara Wurzelkultur mit 0,4 mM der Inhibitoren Nr. 2 und Nr. 4, mit 0,4 mM NaCl und normalem Gamborg’s B5 Flüssigmedium

Abb. C-22: a) Intermediatgehalt und b) Calystegingehalt in der Wurzelkultur von S. dulcamara 7 Wochen kultiviert mit 0,4 mM Substanz Nr. 2, Nr. 4, NaCl und in normalem Gamborg’s B5

Abb. C-23: Identitätsvergleich der TRI-Proteinssequenzen von: S. dulcamara (Sd-TRI); S. tuberosum (St-TRI, AJ307584); H. niger (Hn-TRI, AB026544); D. stramonium (Ds-TRI, L20473)

Abb. C-24: Polyamine in Geweben von S. dulcamara, a) Putrescin, b) Spermidin, c) N-Methylputrescin

Abb. C-25: Partielles Alignment der Aminosäuresequenzen bekannter PMT

Abb. C-26: SDS-Gel nach Reinigung der Sd-PMT mit C-terminalen His-Tag über Nickelaffinitäts chromatographie

Abb. C-28: HSQC-NMR Spektrum eines Extraktes aus S. dulcamara Wurzelkultur nach 120 h Inkubation mit 7 mM [13C-methyl]-Tropinon

Abb. C-29 a-d: GC-MS Zerfallsmuster der Aminosäuren Glutaminsäure und Asparagin

Abb. D-1: Schematische Darstellung des Citratzyklus

Abb. G-1: a) sd-trII in pET-21d (Novagen), b) sd-pmt in pET-21d (Novagen), c) sn-trI in pQE-30 (Qiagen), d) sd-trI in pQE-30 (Qiagen)

Abb. G-2: sdtrII cDNA mit korrespondierender Aminosäuresequenz

Abb. G-3: Putative sdtrII cDNA mit korrespondierender Aminosäuresequenz

Abb. G-4: sntrI cDNA aus S. nigrum mit korrespondierender Aminosäuresequenz

Abb. G-5: Putative sntrI cDNA aus S. nigrum mit korrespondierender Aminosäuresequenz

Abb. G-6: sd-pmt cDNA aus S. dulcamara mit korrespondierender Aminosäuresequenz
Tabellenverzeichnis

Tab. A- 1: Glycosidasehemmwirkung der Calystegine; kH=keine Hemmwirkung..2
Tab. B- 1: Verwendete Enzyme und Kits...14
Tab. B- 2: Primer ..15
Tab. B- 3: Verwendete PCR-Bedingungen ..25
Tab. C- 1: Calysteginvorkommen in den Solanum-Arten ...36
Tab. C- 2: Reaktionsprodukte des Inkubationsassays auf Tropinonreduktase-Aktivität.................................41
Tab. C- 3: Intermediatgehalt in Pflanzen und Wurzelkulturen von S. dulcamara ..43
Tab. C- 4: Identitäten der Aminosäuresequenzen bekannter Tropinonreduktasen in %...............................44
Tab. C- 5: Km- und Vmax-Werte der C-Sd-TRII und N-Sd-TRII mit verschiedenen Substraten.............49
Tab. C- 6: Km-Werte der N-Sd-TRII bei verschiedenen pH-Werten..50
Tab. C- 7: Theoretisch berechnete Bewertungsparameter und experimentell bestimmte Substrat-Affinitäten der N-Sd-TRII..53
Tab. C- 8: Fitnesswerte, Substanzenamen, Registriernummern und Molekulargewichte der 27 getesteten Substanzen ..55
Tab. C- 9: Übersicht der TRI-Sequenzen aus S. nigrum und S. dulcamara..61
Tab. C- 10: Identitäten der Aminosäuresequenzen bekannter Tropinonreduktasen in %..........................62
Tab. C- 11: Identitäten der Aminosäuresequenzen bekannter Putrescin-N-methyltransferasen in %........65
Tab. C- 12: Km und Vmax Werte bestimmt mit colorimetrischem Enzymassay..68
Tab. G- 3: Aktivität und Alkaloidgehalte der S. dulcamara Wurzelkultur..106
Tab. G- 5: Tropinonreduktase-Aktivität bestimmt aus S. nigrum...107
Tab. G- 6: Werte der Bestimmung der Km-Werte für verschiedene Substratanaloga mit C-Sd-TRII und N-Sd-TRII ..107
Tab. G- 7: Substanzen nach Ligandensuche in der Naturstoffdatenbank, B = Registriernummer aus Beilsteindatenbank, Summenformel und Molekulargewicht sind abgebildet..112
Tab. G- 8: Substanzen nach Ligandensuche in der MOE-Datenbank..126
Publikationen und wissenschaftliche Beiträge

Publikationen

Freydank, A.-C., Brandt, W., and Dräger, B., in Vorbereitung, In silico screening and in vitro evaluation of ligands for tropinone reductase, a short-chain dehydrogenase

Beiträge zu wissenschaftlichen Tagungen (Poster, Vortrag)

Meier, A.-C.; Dräger, B. 2004. Tropinone reduction in Solanum nigrum L., *Deutsche Botanikertagung*, (Braunschweig) - Poster

Bartholomeusz, T. A.; Molinié, R.; Roscher, A.; Meier, A.-C.; Lebreton, J.; Sonnet, P.; Dräger, B.; Robins, R. J.; Mesnard, F. 2006. A study of tropane alkaloid metabolism in Solanum dulcamara and Pseudomonas AT3-Young Scientists Conference, “Future Trends in Phytochemistry” (Olomouc) - Poster