
2 Constitutive Models of Creep

Analysis of creep in engineering structures requires the formulation and the solution
of an initial-boundary value problem including the balanceequations and the consti-
tutive assumptions. Equations describing the kinematics of three-dimensional solids
as well as balance equations of mechanics of media are presented in monographs
and textbooks on continuum mechanics, e.g. [29, 35, 44, 57, 108, 131, 178, 199]. In
what follows we discuss constitutive equations for the description of creep behavior
in three-dimensional solids.

The starting point of the engineering creep theory is the introduction of the in-
elastic strain, the creep potential, the flow rule, the equivalent stress and internal
state variables, Sect. 2.1. In Sect. 2.2 we discuss constitutive models of secondary
creep. We start with the von Mises-Odqvist creep potential and the flow rule widely
used in the creep mechanics. To account for stress state effects creep potentials
that include three invariants of the stress tensor are introduced. Consideration of
material symmetries provide restrictions for the creep potential. A novel direct ap-
proach to find scalar valued arguments of the creep potentialfor the given group of
material symmetries is proposed. For several cases of material symmetry appropri-
ate invariants of the stress tensor, equivalent stress and strain expressions as well
as constitutive equations for anisotropic creep are derived. In Sect. 2.3 we review
experimental foundations and models of transient creep behavior under different
multi-axial loading conditions. Section 2.4 is devoted to the description of tertiary
creep under multi-axial stress states. Various models within the framework of con-
tinuum damage mechanics are discussed.

All equations are presented in the direct tensor notation. This notation guaran-
tees the invariance with respect to the choice of the coordinate system and has the
advantage of clear and compact representation of constitutive assumptions, partic-
ularly in the case of anisotropic creep. The basic rules of the direct tensor calculus
as well as some new results for basic sets of invariants with respect to different
symmetry classes are presented in Appendix A.

2.1 General Remarks

The modeling of creep under multi-axial stress states is thekey step in the adequate
prediction of the long-term structural behavior. Such a modeling requires the in-
troduction of tensors of stress, strain, strain rate and corresponding inelastic parts.
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Usually, they are discussed within the framework of continuum mechanics start-
ing from fundamental balance equations. One of the most important and funda-
mental questions is that of the definition (or even the existence) of a measure of
the inelastic strain and the decomposition of the total strain into elastic and irre-
versible parts within the material description. From the theoretical point of view
this is still a subject of many discussions within the non-linear continuum mechan-
ics, e.g. [45, 46, 223, 246].

In engineering mechanics, these concepts are often introduced based on intu-
itive assumptions, available experimental data and applications. Therefore, a lot of
formulations of multi-axial creep equations can be found inthe literature. In what
follows some of them will be discussed. First let us recall several assumptions usu-
ally made in the creep mechanics [58, 235].

The assumption of infinitesimal strains allows to neglect the difference between
the true stresses and strains and the engineering stresses and strains. According to
the continuum mechanics there are no differences between the Eulerian and the
Lagrangian approaches within the material description. Creep equations in the geo-
metrical non-linear case (finite strains) are discussed in the monograph [67], for
example. Finite strain equations based on rheological models are presented in the
monographs [175, 246]. The linearized equations of creep continuum mechanics
can be used in the majority of engineering applications because structures are usu-
ally designed such that the displacements and strains arising as a consequence of the
applied loading do not exceed the prescribed small values. The exception is the case
of thin-walled shells, where geometrical non-linearitiesmust be considered even if
strains are infinitesimal, see Sect. 4.4.

The assumption of the classical non-polar continuum restricts the class of mate-
rials. The equations of motion within the continuum mechanics include the balance
of momentum and the balance of angular momentum, e.g. [108].These equations in-
troduce the stress and the moment stress tensors. Polar materials are those which are
characterized by constitutive equations with respect to both tensors (in general, they
are non-symmetric). In addition, the rotation degrees of freedom, i.e. the rotation
tensor and the angular velocity, are introduced as independent quantities. Models of
polar media found application to granular or porous materials [97, 104, 214], fiber
suspensions [22, 109], or other media with changing microstructure. At present, the
moment stress tensor and the anti-symmetric part of the stress tensor are not con-
sidered in the engineering creep theories. The reason for this is the higher order
complexity of the models and as a consequence increased effort for the identifica-
tion of material characteristics.

The assumption of isothermal conditions makes it possible to decouple the ther-
mal and the mechanical problem. Furthermore, heat transferproblems are not con-
sidered. The influence of the constant temperature on the creep rate is described
by an Arrhenius function, see Sect. 2.2.3. Coupled thermo-mechanical problems of
creep and damage are discussed in [291], where the influence of creep cavitation on
thermal conductivity is considered.
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In this chapter we shall use the following notation. Letσσσ be the Cauchy stress
tensor andεεε be the tensor of infinitesimal strains as they are defined in [29, 57, 199],
among others. Let the symmetric second rank tensorε̇εεcr be the tensor of the rate
of infinitesimal inelastic strains induced by the creep process. For the infinitesimal
strains one can assume the additive split of the total strainrate into elastic and creep
parts, i.e.ε̇εε = ε̇εεel + ε̇εεcr. The constitutive equation relating the stress tensor and
the elastic part of the strain tensor can be formulated according to the generalized
Hooke’s law [29, 55, 126, 199] and will be introduced later. Creep deformation is
accompanied by various microstructural changes having different influences on the
strain rate. The current state of the material microstructure is determined by the
entire previous history of the creep process. It can be characterized by a set of addi-
tional field variables termed as internal or hidden state variables. In this chapter we
shall discuss internal state variables characterizing thestates of hardening/recovery
and damage. In order to distinguish between the hardening and damage mechanisms
we shall specify the “internal hardening variables” byHi and the “internal damage
variables” byωj. The number of such variables and the corresponding evolution
equations (ordinary differential equations with respect to the time variable) is dic-
tated by the knowledge of creep-damage mechanisms for a specified metal or alloy,
the availability of experimental data on creep and long termstrength as well as the
type of the structural analysis application. In some cases the internal state variables
must be introduced as tensors of different rank in order to include effects of the
deformation or damage induced anisotropy.

Constitutive equations of multi-axial creep are usually based on the concept of
the creep potential and the flow rule. The associated flow rulehas the origin in the
engineering theory of plasticity. The basic assumptions ofthis theory are:

– The existence of a yield condition (creep condition, see [55], for example) ex-
pressed by the equationF(σσσ) = 0, whereF is a scalar valued function. In the
general case one can presume thatF depends not only on the stress tensor but
also on the internal state variables and the temperature [202, 265], i.e. the yield
condition has a form

F(σσσ, Hi, ωj, T) = 0, i = 1, . . . , n, j = 1, . . . , m (2.1.1)

– The existence of a flow potential as a function of the stress tensorΦ(σσσ).

The flow rule (sometimes called the normality rule) is the following assumption for
the inelastic strain rate tensor

ε̇εεin = η̇
∂Φ

∂σσσ
, (2.1.2)

whereη̇ is a scalar factor. In the special case that the flow potentialcoincides with
the yield function i.e.Φ = F (2.1.2) represents the associated flow rule. With respect
to the variation of the stress tensorδσσσ one distinguishes between the cases of elastic
state, unloading from an elastic-plastic state, neutral loading and loading, i.e.
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F(σσσ) < 0, elastic state

F(σσσ) = 0, and δF = δσσσ ······ ∂F

∂σσσ
< 0 unloading

F(σσσ) = 0, and δF = δσσσ ······ ∂F

∂σσσ
= 0 neutral loading

F(σσσ) = 0, and δF = δσσσ ······ ∂F

∂σσσ
> 0 loading

For work hardening materialṡη > 0 is set in the case of loading/neutral loading,
otherwiseη̇ = 0, see e.g. [201]. Further details of the flow theory as well as different
arguments leading to (2.1.2) can be found in textbooks on theory of plasticity, e.g.
[138, 151, 153, 161, 201, 206, 292].

Within the creep mechanics the flow theory is usually appliedwithout the con-
cept of the yield stress or yield condition. This is motivated by the fact that creep
is a thermally activated process and the material starts to creep even under low and
moderate stresses lying below the yield limit. Furthermore, at high temperatures
0.5Tm < T < 0.7Tm the main creep mechanism for metals and alloys is the dif-
fusion of vacancies, e.g. [117]. Under this condition the existence of a yield or a
creep limit cannot be verified experimentally. In [185], p.278 it is stated that “the
concept of a loading surface and the loading-unloading criterion which was used in
plasticity is no longer necessary”. In monographs [55, 58, 201, 202, 250] the flow
rule is applied as follows

ε̇εεcr = η̇
∂Φ

∂σσσ
, η̇ > 0 (2.1.3)

Equation (2.1.3) states the “normality” of the creep rate tensor to the surfaces
Φ(σσσ) = const. The scalar factoṙη is determined according to the hypothesis of
the equivalence of the dissipation power [2, 58]. The dissipation power is defined
by P = ε̇εεcr ······ σσσ. It is assumed thatP = ε̇cr

eqσeq, whereε̇cr
eq is an equivalent creep

rate andσeq is an equivalent stress. The equivalent measures of stress and creep rate
are convenient to compare experimental data under different stress states (see Sect.
1.1.2). From the above hypothesis follows

η̇ =
P

∂Φ

∂σσσ
······ σσσ

=
ε̇cr

eqσeq

∂Φ

∂σσσ
······ σσσ

(2.1.4)

The equivalent creep rate is defined as a function of the equivalent stress according
to the experimental data for uni-axial creep as well as creepmechanisms operating
for the given stress range. An example is the power law stressfunction

ε̇cr
eq(σeq) = aσn

eq (2.1.5)

Another form of the flow rule without the yield condition has been proposed by
Odqvist, [234, 236]. The steady state creep theory by Odqvist, see [234], p.21 is
based on the variational equationδW = δσσσ ······ ε̇εεcr leading to the flow rule
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ε̇εεcr =
∂W

∂σσσ
, (2.1.6)

where the scalar valued functionW(σσσ) plays the role of the creep potential1. In or-
der to specify the creep potential, the equivalent stressσeq(σσσ) is introduced. Taking
into account thatW(σσσ) = W(σeq(σσσ)) the flow rule (2.1.6) yields

ε̇εεcr =
∂W

∂σeq

∂σeq

∂σσσ
= ε̇cr

eq

∂σeq

∂σσσ
, ε̇cr

eq ≡
∂W

∂σeq
(2.1.7)

The creep potentialW(σeq) is defined according to experimental data of creep under
uni-axial stress state for the given stress range. An example is the Norton-Bailey-
Odqvist creep potential

W =
σ0

n + 1

(

σvM

σ0

)n+1

, (2.1.8)

widely used for the description of steady state creep of metals and alloys. In (2.1.8)
σ0 andn are material constants andσvM is the von Mises equivalent stress. Below
we discuss various restrictions on the potentials, e.g. thesymmetries of the creep
behavior and the inelastic incompressibility.

In order to compare the flow rules (2.1.3) and (2.1.6) let us compute the dissipa-
tion power. From (2.1.7) it follows

P = ε̇εεcr ······ σσσ =
∂W

∂σeq

∂σeq

∂σσσ
······ σσσ = ε̇cr

eq

∂σeq

∂σσσ
······ σσσ,

We observe that the equivalence of the dissipation power follows from (2.1.7) if the
equivalent stress satisfies the following partial differential equation

∂σeq

∂σσσ
······ σσσ = σeq (2.1.9)

Furthermore, in this case the flow rules (2.1.3) and (2.1.6) lead to the same creep
constitutive equation. Many proposed equivalent stress expressions satisfy (2.1.9).

The above potential formulations originate from the works of Richard von
Mises, where the existence of variational principles is assumed in analogy to those
known from the theory of elasticity (the principle of the minimum of the com-
plementary elastic energy, for example). Richard von Miseswrote [320]: “Die
Formänderung regelt sich derart, daß die pro Zeiteinheit von ihr verzehrte Arbeit
unverändert bleibt gegenüber kleinen Variationen der Spannungen innerhalb der
Fließgrenze. Da die Elastizitätstheorie einen ähnlichen Zusammenhang zwischen
den Deformationsgrößen und dem elastischen Potential lehrt, so nenne ich die Span-
nungsfunktionF auch das “plastische Potential” oder “Fließpotential”.” It can be
shown that the variational principles of linear elasticityare special cases of the en-
ergy balance equation (for isothermal or adiabatic processes), see e.g. [198], p. 148,

1 The dependence on the temperature is dropped for the sake of brevity.
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for example. Many attempts have been made to prove or to motivate the potential
formulations within the framework of irreversible thermodynamics. For quasi-static
irreversible processes various extremum principles (e.g.the principle of least irre-
versible force) are stipulated in [337]. Based on these principles and additional ar-
guments like material stability, the potential formulations and the flow rules (2.1.1)
and (2.1.6) can be verified. In [185], p. 63 a complementary dissipation potential
as a function of the stress tensor as well as the number of additional forces conju-
gate to internal state variables is postulated, whose properties, e.g. the convexity, are
sufficient conditions to satisfy the dissipation inequality. In [206] theories of plastic-
ity and visco-plasticity are based on the notion of the dissipation pseudo-potentials.
However, as far as we know, the flow rules (2.1.1) and (2.1.6) still represent the as-
sumptions confirmed by various experimental observations of steady state creep in
metals rather than consequences of the fundamental laws. The advantage of varia-
tional statements is that they are convenient for the formulation of initial-boundary
value problems and for the numerical analysis of creep in engineering structures.
The direct variational methods (for example, the Ritz method, the Galerkin method,
the finite element method) can be applied for the numerical solution.

Finally, several creep theories without creep potentials may be found in the lit-
erature. In the monograph [246] various constitutive equations of elastic-plastic and
elastic-visco-plastic behavior in the sense of rheological models are discussed with-
out introducing the plasticity, creep or dissipation potentials. For example, the mod-
els of viscous flow of isotropic media known from rheology, e.g. [123, 269], can be
formulated as the relations between two coaxial tensors

σσσ = G0III + G1ε̇εε + G2ε̇εε · ε̇εε (2.1.10)

or
ε̇εε = H0III + H1σσσ + H2σσσ ··· σσσ, (2.1.11)

whereGi is a function of invariants oḟεεε while Hi depend on invariants ofσσσ. The
application of the dissipative inequality provides restrictions imposed onGi or Hi.
The existence of the potential requires thatGi or Hi must satisfy certain integrability
conditions [58, 199].
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2.2 Secondary Creep

Secondary or stationary creep is for many applications the most important creep
model. After a relatively short transient period the material creeps in such a manner
that an approximate equilibrium between hardening and softening processes can be
assumed. This equilibrium exists for a long time and the long-term behavior of a
structure can be analyzed assuming stationary creep processes. In this section sev-
eral models of secondary creep are introduced. The secondary or stationary creep
assumes constant or slowly varying loading and temperatureconditions. Further-
more, the stress tensor is assumed to satisfy the condition of proportional loading,
i.e. σσσ(t) = ϕ(t)σσσ0, whereϕ(t) is a slowly varying function of time andσσσ0 is a
constant tensor.

2.2.1 Isotropic Creep

In many cases creep behavior can be assumed to be isotropic. In what follows the
classical potential and the potential formulated in terms of three invariants of the
stress tensor are introduced.

2.2.1.1 Classical Creep Equations. The starting point is the Odqvist flow rule
(2.1.6). Under the assumption of the isotropic creep, the potential must satisfy the
following restriction

W(QQQ ··· σσσ ··· QQQT) = W(σσσ) (2.2.1)

for any symmetry transformationQQQ, QQQ ··· QQQT = III, det QQQ = ±1. From (2.2.1) it
follows that the potential depends only on the three invariants of the stress tensor
(see Sect. A.3.1). Applying the principal invariants

J1(σσσ) = tr σσσ, J2(σσσ) =
1

2
[(tr σσσ)2 − tr σσσ2],

J3(σσσ) = detσσσ =
1

6
(tr σσσ)3 − 1

2
tr σσσtr σσσ2 +

1

3
tr σσσ3

(2.2.2)

one can write
W(σσσ) = W(J1, J2, J3)

Any symmetric second rank tensor can be uniquely decomposedinto the spherical
part and the deviatoric part. For the stress tensor this decomposition can be written
down as follows

σσσ = σmIII + sss, tr sss = 0 ⇒ σm =
1

3
tr σσσ,

wheresss is the stress deviator andσm is the mean stress. With the principal invariants
of the stress deviator

J2D = −1

2
tr sss2 = −1

2
sss ······ sss, J3D =

1

3
tr sss3 =

1

3
(sss ··· sss) ······ sss
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the potential takes the form

W = W(J1, J2D, J3D),

Applying the rule for the derivative of a scalar valued function with respect to a
second rank tensor (see Sect. A.2.4) and (2.1.6) one can obtain

ε̇εεcr =
∂W

∂J1
III − ∂W

∂J2D
sss +

∂W

∂J3D

(

sss2 − 1

3
tr sss2III

)

(2.2.3)

In the classical creep theory it is assumed that the inelastic deformation does not
produce a significant change in volume. The spherical part ofthe creep rate tensor
is neglected, i.etr ε̇εεcr = 0. Setting the trace of (2.2.3) to zero results in

tr ε̇εεcr = 3
∂W

∂J1
= 0 ⇒ W = W(J2D , J3D)

From this follows that the creep behavior is not sensitive tothe hydrostatic stress
stateσσσ = −pIII, wherep > 0 is the hydrostatic pressure. The creep equation (2.2.3)
can be formulated as

ε̇εεcr = − ∂W

∂J2D
sss +

∂W

∂J3D

(

sss2 − 1

3
tr sss2III

)

(2.2.4)

The last term in the right-hand side of (2.2.4) is non-linearwith respect to the stress
deviatorsss. Equations of this type are called tensorial non-linear equations, e.g. [35,
58, 202, 265]. They allow to consider some non-classical or second order effects of
the material behavior [35, 66]. As an example let us considerthe pure shear stress
statesss = τ(mmm ⊗ nnn + nnn ⊗mmm), whereτ is the magnitude of the shear stress andmmm
andnnn are orthogonal unit vectors. From (2.2.4) follows

ε̇εεcr = − ∂W

∂J2D
τ(mmm ⊗ nnn + nnn ⊗mmm) +

∂W

∂J3D
τ2

(

1

3
III − ppp ⊗ ppp

)

,

where the unit vectorppp is orthogonal to the plane spanned onmmm andnnn. We observe
that the pure shear load leads to shear creep rate, and additionally to the axial creep
rates (Poynting-Swift effect). Within the engineering creep mechanics such effects
are usually neglected.

The assumption that the potential is a function of the secondinvariant of the
stress deviator only, i.e.

W = W(JD
2 )

leads to the classical von Mises type potential [320]. In applications it is convenient
to introduce the equivalent stress which allows to compare the creep behavior un-
der different stress states including the uni-axial tension. The von Mises equivalent
stress is defined as follows

σvM =

√

3

2
sss ······ sss =

√

−3J2D , (2.2.5)
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where the factor3/2 is used for convenience (in the case of the uni-axial tension
with the stressσ the above expression providesσvM = σ). With W = W(σvM(σσσ))
the flow rule (2.1.6) results in

ε̇εεcr =
∂W(σvM)

∂σvM

∂σvM

∂σσσ
=

∂W(σvM)

∂σvM

3

2

sss

σvM
(2.2.6)

The second invariant ofε̇εεcr can be calculated as follows

ε̇εεcr ······ ε̇εεcr =
3

2

[

∂W(σvM)

∂σvM

]2

Introducing the notatioṅε2
vM = 2

3 ε̇εεcr ······ ε̇εεcr and taking into account that

P =
∂W(σvM)

∂σvM
σvM ≥ 0

one can write

ε̇εεcr =
3

2
ε̇vM

sss

σvM
, ε̇vM =

∂W(σvM)

∂σvM
(2.2.7)

The constitutive equation of steady state creep (2.2.7) wasproposed by Odqvist
[236]. Experimental verifications of this equation can be found, for example, in
[295] for steel 45, in [228] for titanium alloy Ti-6Al-4V andin [245] for alloys Al-
Si, Fe-Co-V and XC 48. In these works tubular specimens were loaded by tension
force and torque leading to the plane stress stateσσσ = σnnn ⊗nnn + τ(nnn⊗mmm +mmm ⊗nnn),
whereσ andτ are the magnitudes of the normal and shear stresses (see Sect. 1.1.2).
Surfacesσ2

vM = σ2 + 3τ2 = const corresponding to the same steady state values of
ε̇vM were recorded. Assuming the Norton-Bailey type potential (2.1.8), from (2.2.7)
it follows

ε̇εεcr =
3

2
aσn−1

vM sss (2.2.8)

This model is widely used in estimations of steady-state creep in structures, e.g.
[77, 80, 236, 250, 265].

2.2.1.2 Creep Potentials with Three Invariants of the Stres s Tensor. In
some cases, deviations from the von Mises type equivalent stress were found in ex-
periments. For example, different secondary creep rates under tensile and compres-
sive loading were observed in [195] for Zircaloy-2, in [106]for aluminium alloy
ALC101 and in [301], p. 118 for the nickel-based alloy René 95. One way to con-
sider such effects is to construct the creep potential as a function of three invariants
of the stress tensor. Below we discuss a generalized creep potential, proposed in
[9]. This potential leads to tensorial non-linear constitutive equations and allows to
predict the stress state dependent creep behavior and second order effects. The 6 un-
known parameters in this law can be identified by some basic tests. Creep potentials
formulated in terms of three invariants of the stress tensorare termed non-classical
[9].
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By analogy to the classical creep equations, the dependenceon the stress tensor
is defined by means of the equivalent stressσeq. Various equivalent stress expres-
sions have been proposed in the literature for the formulation of yield or failure
criteria, e.g. [27]. In the case of creep, different equivalent stress expressions are
summarized in [160]. In [9] the following equivalent stressis proposed

σeq = ασ1 + βσ2 + γσ3 (2.2.9)

with the linear, the quadratic and the cubic invariants

σ1 = µ1 I1, σ2
2 = µ2 I2

1 + µ3 I2, σ3
3 = µ4 I3

1 + µ5 I1 I2 + µ6 I3, (2.2.10)

where Ii = tr σσσi (i = 1, 2, 3) are basic invariants of the stress tensor (see Sect.
A.3.1), µj (j = 1, . . . , 6) are parameters, which depend on the material properties.
α, β, γ are numerical coefficients for weighting the influence of thedifferent parts
in the equivalent stress expression (2.2.9). Such a weighting is usual in phenomeno-
logical modelling of material behavior. For example, in [132] similar coefficients
are introduced for characterizing different failure modes.

The von Mises equivalent stress (2.2.5) can be obtained from(2.2.9) by setting
α = γ = 0, β = 1 andµ3 = 1.5, µ2 = −0.5. In what follows we setβ = 1 and
the equivalent stress takes the form

σeq = ασ1 + σ2 + γσ3 (2.2.11)

It can be verified that the equivalent stress (2.2.11) satisfies (2.1.9).
The flow rule (2.1.6) allows to formulate the constitutive equation for the creep

rate tensor

ε̇εεcr =
∂W(σeq)

∂σeq

∂σeq

∂σσσ
=

∂W(σeq)

∂σeq

(

α
∂σ1

∂σσσ
+

∂σ2

∂σσσ
+ γ

∂σ3

∂σσσ

)

(2.2.12)

Taking into account the relations between the invariantsσi and the basic invariants
Ii and using the rules for the derivatives of the invariants (see Sect. A.2.4), we obtain

∂σ1

∂σσσ
= µ1III,

∂σ2

∂σσσ
=

µ2 I1III + µ3σσσ

σ2
,

∂σ3

∂σσσ
=

µ4 I2
1 III +

µ5

3
I2III +

2

3
µ5 I1σσσ + µ6σσσ ··· σσσ

σ2
3

(2.2.13)

As a result, the creep constitutive equation can be formulated as follows

ε̇εεcr =
∂W(σeq)

∂σeq






αµ1III+

µ2 I1III + µ3σσσ

σ2
+γ

(

µ4 I2
1 +

µ5

3
I2

)

III +
2

3
µ5 I1σσσ + µ6σσσ ··· σσσ

σ2
3







(2.2.14)
Introducing the notation
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ε̇cr
eq ≡

∂W(σeq)

∂σeq

the constitutive equation takes the form

ε̇εεcr = ε̇cr
eq






αµ1III +

µ2 I1III + µ3σσσ

σ2
+ γ

(

µ4 I2
1 +

µ5

3
I2

)

III +
2

3
µ5 I1σσσ + µ6σσσ ··· σσσ

σ2
3







(2.2.15)
Equation (2.2.15) is non-linear with respect to the stress tensor. Therefore, second
order effects, e.g. [35, 56, 312] are included in the material behavior description. In
addition, the volumetric creep rate can be calculated from (2.2.15) as follows

ε̇cr
V = ε̇cr

eq

[

3αµ1 +
(3µ2 + µ3)I1

σ2
+ γ

(9µ4 + 2µ5)I2
1 + 3(µ5 + µ6)I2

3σ2
3

]

(2.2.16)
The volumetric creep rate is different from 0, i.e. the compressibility or dilatation
can be considered.

The derived creep equation has the form (2.1.11) of the general relation between
two coaxial tensors. The comparison of (2.1.11) and (2.2.15) provides

H0 = ε̇cr
eq

(

αµ1 +
µ2 I1

σ2
+ γ

3µ4 I2
1 + µ5 I2

3σ2
3

)

,

H1 = ε̇cr
eq

(

µ3

σ2
+ γ

2µ5 I1

3σ2
3

)

,

H2 = ε̇cr
eqγ

µ6

σ2
3

(2.2.17)

In [9] the power law function of the equivalent stress (2.1.5) is applied to model
creep behavior of several materials. Four independent creep tests are required to
identify the material constants. The stress states realized in tests should include uni-
axial tension, uni-axial compression, torsion and hydrostatic pressure. Let us note,
that experimental data which allows to identify the full setof material constants in
(2.2.15) are usually not available. In applications one mayconsider the following
special cases of (2.2.15) with reduced number of material constants.

The classical creep equation based on the von Mises equivalent stress can be
derived assuming the following values of material constants

α = γ = 0, µ2 = −1/2, µ3 = 3/2, (2.2.18)

σeq = σ2 =

√

−1

2
I2
1 +

3

2
I2 =

√

3

2
sss ······ sss = σvM (2.2.19)

The creep rate tensor takes the form
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ε̇εεcr = ε̇cr
eq

(
√

3

2
sss ······ sss

)

3σσσ − I1III

2

√

3

2
sss ······ sss

=
3

2

ε̇cr
eq(σvM)

σvM
sss (2.2.20)

Assuming identical behavior in tension and compression andneglecting second
order effects fromα = γ = 0, the following equivalent stress can be obtained

σeq = σ2 =
√

µ2 I2
1 + µ3 I2 (2.2.21)

The corresponding creep constitutive equation takes the form

ε̇εεcr = ε̇cr
eq(σ2)

µ2 I1III + µ3σσσ

σ2
(2.2.22)

The parametersµ2 and µ3 can be determined from uni-axial tension and torsion
tests. Based on the experimental data presented in [165, 166] for technical pure
copper M1E (Cu 99,9%) atT = 573 K the parametersµ2 andµ3 are identified in
[24].

Neglecting the influence of the third invariant(γ = 0), the creep rate tensor can
be expressed as follows

ε̇εεcr = ε̇cr
eq(σeq)

(

αµ1III +
µ2 I1III + µ3σσσ

σ2

)

(2.2.23)

The above equation describes different behavior in tensionand compression, and in-
cludes the volumetric creep rate. Three independent tests,e.g. tension, compression
and torsion are required to identify the material constantsµ1, µ2 andµ3.

With the quadratic invariant and the reduced cubic invariant several special cases
with three material constants can be considered. Setting (αµ1 = µ4 = µ5 = 0) the
tensorial non-linear equation can be obtained

ε̇εεcr = ε̇cr
eq(σeq)

(

µ2 I1III + µ3σσσ

σ2
+ γ

µ6σσσ ··· σσσ

σ2
3

)

(2.2.24)

With αµ1 = µ4 = µ6 = 0 the creep rate tensor takes the form

ε̇εεcr = ε̇cr
eq(σeq)

(

µ2 I1III + µ3σσσ

σ2
+ γ

µ5(I2III + 2I1σσσ)

σ2
3

)

(2.2.25)

The material constants in (2.2.23), (2.2.24) and (2.2.25) were identified in [2, 28]
according to data from multi-axial creep tests for plastics(PVC) at room temper-
ature [187] and aluminium alloy AK4-1T at 473 K [94, 125, 294]. Furthermore,
simulations have been performed in [2, 28] to compare Eqs (2.2.23), (2.2.24) and
(2.2.25) as they characterize creep behavior under different loading conditions. The
conclusion was made that cubic invariants applied in (2.2.24) and (2.2.25) do not
deliver any significant improvement in the material behavior description.
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2.2.2 Creep of Initially Anisotropic Materials

Anisotropic creep behavior and anisotropic creep modelingare subjects which are
rarely discussed in the classical monographs and textbookson creep mechanics
(only in some books one may found the flow potentials introduced by von Mises
[320] and Hill [138]). The reason for this is that the experimental data from creep
tests usually show large scatter within the range of 20% or even more. Therefore,
it was often difficult to recognize whether the difference increep curves mea-
sured for different specimens (cut from the same material indifferent directions)
is the result of the anisotropy. Therefore, it was no use for anisotropic models with
higher order complexity, since the identification of material constants was difficult
or even impossible. In the last two decades the importance inmodeling anisotropic
creep behavior of materials and structures is discussed in many publications. In
[47, 200, 259, 260, 261, 262] experimental results of creep of superalloys SRR99
and CMSX-4 are reported, which demonstrate significant anisotropy of creep be-
havior for different orientations of specimens with respect to the crystallographic
axes. In [141] experimental creep curves of a 9CrMoNbV weld metal are presented.
They show significant difference for specimens cut in longitudinal (welding) direc-
tion and transverse directions. Another example is a material reinforced by fibers,
showing quite different creep behavior in direction of fibers and in the transverse
direction, e.g. [273, 274].

Within the creep mechanics one usually distinguishes between two kinds of
anisotropy: the initial anisotropy and the deformation or damage induced anisotropy.
In what follows the first case will be introduced. The second case will be discussed
in Sects 2.3.2 and 2.4.2.

The modeling of anisotropic behavior starts with the concepts of material sym-
metry, physical symmetry, symmetry transformation and symmetry group, e.g.
[331]. The material symmetry group is related to the symmetries of the materials
microstructure, e.g. the crystal symmetries, the symmetries due to the arrangement
of fibers in a fiber-reinforced materials, etc. The symmetry transformations are de-
scribed by means of orthogonal tensors. Two important of them are

– the reflection
QQQ(nnn) = III − 2nnn ⊗ nnn, (2.2.26)

wherennn is the unit normal to the mirror plane,
– the rotation about a fixed axis

QQQ(ϕmmm) = mmm ⊗mmm + cos ϕ(III −mmm ⊗mmm) + sin ϕmmm × III, (2.2.27)

wheremmm is the axis of rotation andϕ (−π < ϕ < π) is the angle of rotation.

Any arbitrary rotation of a rigid body can be described as a composition of three ro-
tations (2.2.27) about three fixed axes [333]. Any symmetry transformation can be
represented by means of rotations and reflections, i.e. the tensors of the type (2.2.26)
and (2.2.27). The notion of the symmetry group as a set of symmetry transforma-
tions was introduced in [230]. The symmetry groups of polar and axial tensors are
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discussed in [332]. According to [313], p. 82 a “simple solid” is called aelotropic or
anisotropic, if its symmetry group is a proper subgroup of the orthogonal group.

The concept of the “physical symmetry group” is related to the symmetries of
the material behavior, e.g. linear elasticity, thermal expansion, plasticity, creep, etc.
It can only be established based on experimental observations. Physical symmetries
must be considered in the formulation of constitutive equations and constitutive
functions. As an example let us consider the symmetry group of the fourth rank
elasticity tensor(4)CCC = Cijkleeei ⊗ eeej ⊗ eeek ⊗ eeel as the set of orthogonal tensorsQQQ
satisfying the equation, e.g. [25, 332],

(4)CCC′ = CijklQQQ ··· eeei ⊗QQQ ··· eeej ⊗QQQ ··· eeek ⊗QQQ ··· eeel =(4) CCC (2.2.28)

The physical symmetries or the set of orthogonal solutions of (2.2.28) can be found
only if all the 21 coordinates of the elasticity tensor(4)CCC for a selected basis are
identified from tests. Vice versa, if the physical symmetry group is known then one
can find the general structure of the elasticity tensor basedon (2.2.28). Clearly,
neither the elasticity tensor nor the physical symmetry group of the linear elastic
behavior can be exactly found from tests. Establishment of physical symmetries of
creep behavior is rather complicated due to relatively large scatter of experimental
data. However, one can relate physical symmetries to the known symmetries of ma-
terials microstructure. According to the Neumann principle widely used in different
branches of physics and continuum mechanics, e.g. [25, 232,332]

The symmetry group of the reason belongs to the symmetry group of the
consequence.

Considering the material symmetries as one of the “reasons”and the physical sym-
metries as a “consequence” one can apply the following statement [331]

For a material element and for any of its physical properties every material
symmetry transformation of the material element is a physical symmetry
transformation of the physical property.

In many cases the material symmetry elements are evident from the arrangement
of the materials microstructure as a consequence of manufacturing conditions, for
example. The above principle states that the physical behavior, e.g. the steady state
creep, contains all elements of the material symmetry. The physical symmetry group
usually possesses more elements than the material symmetrygroup, e.g. [232].

2.2.2.1 Classical Creep Equations. Here we discuss steady state creep equa-
tions based on the flow rule (2.1.6) and assumption that the creep potential has a
quadratic form with respect to the invariants of the stress tensor. These invariants
must be established according to the assumed symmetry elements of the creep be-
havior. The assumption of the quadratic form of the flow potential originates from
the von Mises work on plasticity of crystals [320]. Therefore, the equations pre-
sented below may be termed as von Mises type equations.
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Transverse Isotropy. In this case the potentialW(σσσ) must satisfy the following
restriction

W(QQQ ··· σσσ ···QQQT) = W(σσσ), QQQ(ϕmmm) = mmm ⊗mmm + cos ϕ(III −mmm ⊗mmm) + sin ϕmmm × III
(2.2.29)

In (2.2.29)QQQ(ϕmmm) is the assumed element of the symmetry group, wherebymmm is
a constant unit vector andϕ is the arbitrary angle of rotation aboutmmm. From the
restriction (2.2.29) follows that the potentialW must satisfy the following partial
differential equation (see Sect. A.3.2)

(mmm × σσσ − σσσ ×mmm) ······
(

∂W

∂σσσ

)T

= 0 (2.2.30)

The set of integrals of this equation represent the set of functionally independent
scalar valued arguments of the potentialW with respect to the symmetry trans-
formation (2.2.29). The characteristic system of (2.2.30)is the system of ordinary
differential equations

dσσσ

ds
= (mmm × σσσ − σσσ ×mmm) (2.2.31)

Any system ofn linear ordinary differential equations has not more thann− 1 func-
tionally independent integrals [92]. Sinceσσσ is symmetric, (2.2.31) is a system of six
ordinary differential equations and has not more than five functionally independent
integrals. The lists of these integrals are presented by (A.3.15) and (A.3.26). Within
the classical von Mises type theory second order effects areneglected. Therefore,
we have to neglect the arguments which are cubic with respectto the stress tensor.
In this case the difference between various kinds of transverse isotropy considered
in Sect. A.3.2 vanishes. It is possible to use different lists of of scalar arguments.
The linear and quadratic arguments from (A.3.15) are

tr σσσ, tr σσσ2, mmm ··· σσσ ···mmm, mmm ··· σσσ2 ···mmm (2.2.32)

Instead of (2.2.32) one can use other arguments, for example[273],

tr σσσ, tr sss2 = tr σσσ2 − 1

3
(tr σσσ)2,

mmm ··· sss ···mmm = mmm ··· σσσ ···mmm − 1

3
tr σσσ,

mmm ··· sss2 ···mmm = mmm ··· σσσ2 ···mmm − 2

3
mmm ··· sss ···mmmtr σσσ − 1

9
(tr σσσ)2

(2.2.33)

In what follows we prefer another set of invariants which canbe related to (2.2.32)
but has a more clear mechanical interpretation. Let us decompose the stress tensor
as follows

σσσ = σmmmmm ⊗mmm + σσσp + τττm ⊗mmm + mmm ⊗ τττm (2.2.34)

with the projections
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Figure 2.1 Stress state in a transversely isotropic medium and corresponding projections
σmm, σσσp andτττm

σmm = mmm ··· σσσ ···mmm,

σσσp = (III −mmm ⊗mmm) ··· σσσ ··· (III −mmm ⊗mmm),

τττm = mmm ··· σσσ ··· (III −mmm ⊗mmm)

(2.2.35)

The meaning of the decomposition (2.2.34) is obvious.σmm is the normal stress
acting in the plane with the unit normalmmm, σσσp stands for the “plane” part of the
stress tensor representing the stress state in the isotropyplane.τττm is the shear stress
vector in the plane with the unit normalmmm. For the orthonormal basiskkk, lll andmmm the
projections are (see Fig. 2.1)

τττm = τmkkkk + τmllll,

σσσp = σkkkkk ⊗ kkk + σlllll ⊗ lll + τkl(kkk ⊗ lll + lll ⊗ kkk)

The plane part of the stress tensor can be further decomposedas follows

σσσp = sssp +
1

2
tr σσσp(III −mmm ⊗mmm), tr sssp = 0 (2.2.36)

Now we can introduce the following set of transversely isotropic invariants
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I1m = σmm = mmm ··· σσσ ···mmm,

I2m = tr σσσp = tr σσσ −mmm ··· σσσ ···mmm,

I3m =
1

2
tr sss2

p =
1

2
tr σσσ2

p −
1

4
(tr σσσp)

2

=
1

2

(

tr σσσ2 + (mmm ··· σσσ ···mmm)2
)

−mmm ··· σσσ2 ···mmm − 1

4
(tr σσσ −mmm ··· σσσ ···mmm)2,

I4m = τττm ··· τττm = mmm ··· σσσ2 ···mmm − (mmm ··· σσσ ···mmm)2 = (mmm × σσσ ···mmm) ··· (mmm × σσσ ···mmm)
(2.2.37)

In the above listI2m and I3m are two invariants ofσσσp and I4m = τττ2
m = τττm ··· τττm

is the square of the length of the shear stress vector acting in the plane with the
unit normalmmm. It is shown in Sect. A.3.2 that the above invariants are integrals of
(2.2.31).

Taking into account the relations

∂I1m

∂σσσ
= mmm ⊗mmm,

∂I2m

∂σσσ
= III −mmm ⊗mmm,

∂I3m

∂σσσ
= sssp,

∂I4m

∂σσσ
= τττmmm ⊗mmm + mmm ⊗ τττmmm

and the flow rule (2.1.6) we obtain the following creep equation

ε̇εεcr =
∂W

∂I1m
mmm ⊗mmm +

∂W

∂I2m
(III −mmm ⊗mmm) +

∂W

∂I3m
sssp

+
∂W

∂I4m
(τττmmm ⊗mmm + mmm ⊗ τττmmm)

(2.2.38)

The next assumption of the classical theory is the zero volumetric creep rate. Taking
the trace of (2.2.38) we obtain

tr ε̇εεcr =
∂W

∂I1m
+ 2

∂W

∂I2m
= 0 ⇒ W = W(I1m − 1

2
I2m, I3m, I4m) (2.2.39)

Introducing the notation

Jm ≡ I1m − 1

2
I2m = mmm ··· σσσ ···mmm − 1

2
tr σσσp

the creep equation (2.2.38) takes the form

ε̇εεcr =
1

2

∂W

∂Jm
(3mmm ⊗mmm − III) +

∂W

∂I3m
sssp +

∂W

∂I4m
(τττmmm ⊗mmm + mmm ⊗ τττmmm) (2.2.40)

By analogy to the isotropic case we formulate the equivalentstress as follows

σ2
eq = α1 J2

m + 3α2 I3m + 3α3 I4m

= α1

(

mmm ··· σσσ ···mmm − 1

2
tr σσσp

)2

+
3

2
α2tr sss2

p + 3α3τ2
mmm

(2.2.41)
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The positive definiteness of the quadratic form (2.2.41) is provided by the conditions
αi > 0, i = 1, 2, 3. The deviatoric partsss of the stress tensor and its second invariant
can be computed by

sss = Jm

(

mmm ⊗mmm − 1

3
III

)

+ sssp + τττm ⊗mmm + mmm ⊗ τττm,

tr sss2 =
2

3
J2
m + tr sss2

p + 2τ2
mmm

Consequently, the von Mises equivalent stress (2.2.5) follows from (2.2.41) by set-
ting α1 = α2 = α3 = 1.

The advantage of the introduced invariants over (2.2.32) or(2.2.33) is that they
can be specified independently from each other. For example,set the second invari-
ant in (2.2.32) to zero, i.e.tr σσσ2 = σσσ ······ σσσ = 0. From this follows thatσσσ = 000 and
consequently all other invariants listed in (2.2.32) are simultaneously equal to zero.
In addition, the introduced invariants can be related to typical stress states which
should be realized in creep tests for the identification of constitutive functions and
material constants. With the equivalent stress (2.2.41) the creep equation (2.2.40)
can be rewritten as follows

ε̇εεcr =
3

2σeq

∂W

∂σeq

[

α1 Jm

(

mmm ⊗mmm − 1

3
III

)

+ α2sssp + α3(τττm ⊗mmm + mmm ⊗ τττm)

]

(2.2.42)

With the notationε̇cr
eq ≡ ∂W

∂σeq
(2.2.42) takes the form

ε̇εεcr =
3

2

ε̇cr
eq

σeq

[

α1 Jm

(

mmm ⊗mmm − 1

3
III

)

+ α2sssp + α3(τττm ⊗mmm + mmm ⊗ τττm)

]

(2.2.43)

Let us introduce the following parts of the creep rate tensor

ε̇cr
mm ≡ mmm ··· ε̇εεcr ···mmm,

ε̇εεcr
p ≡ (III −mmm ⊗mmm) ··· ε̇εεcr ··· (III −mmm ⊗mmm),

ǫ̇ǫǫcr
p ≡ ε̇εεcr

p − 1

2
ε̇cr

mm(III −mmm ⊗mmm),

γ̇γγcr
m ≡ mmm ··· ε̇εεcr ··· (III −mmm ⊗mmm)

(2.2.44)

From (2.2.42) we obtain

ε̇cr
mm = α1

ε̇cr
eq

σeq
Jm, ǫ̇ǫǫcr

p =
3

2
α2

ε̇cr
eq

σeq
sssp, γ̇γγcr

m =
3

2
α3

ε̇cr
eq

σeq
τττm (2.2.45)

Similarly to the isotropic case the equivalent creep rate can be calculated as follows

ε̇cr
eq =

√

1

α1
(ε̇cr

mm)2 +
2

3

1

α2
ǫ̇ǫǫcr

p ······ ǫ̇ǫǫcr
p +

4

3

1

α3
γ̇γγcr

m ··· γ̇γγcr
m (2.2.46)
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Figure 2.2 Stress state in an orthotropic medium and corresponding projectionsσnnninnni
, τnnninnnj

The equivalent creep rate (2.2.46) is useful for the verification of the creep potential
hypothesis and the assumed quadratic form of the equivalentstress with respect
to the transversely isotropic invariants of the stress tensor. The introduced creep
equation contains three material constantsαi and the equivalent creep rateε̇cr

eq.
The assumptions of transverse isotropy and the quadratic form of the equivalent

stress are widely used in models of elasticity, plasticity,creep and failure of fiber
reinforced composites, e.g. [7, 74, 273, 274, 279, 298], anddirectionally solidified
superalloys [42, 213]. The proposed equations will be applied in Sect. 3.2 to the
description of anisotropic creep in a multi-pass weld metal.

Orthotropic Symmetry. In this case the potentialW(σσσ) must satisfy the follow-
ing restriction

W(QQQi ··· σσσ ··· QQQT
i ) = W(σσσ), QQQi = III − nnni ⊗ nnni, i = 1, 2, 3 (2.2.47)

In (2.2.47)QQQi denote the assumed symmetry elements - three reflections with re-
spect to the planes with unit normals±nnni, Fig. 2.2. The unit vectors±nnn1,±nnn2,±nnn3

are assumed to be orthogonal, i.e.nnni ··· nnnj = 0, i 6= j . In Sect. A.3.3 a set of scalar
arguments which satisfy the above restrictions is presented by (A.3.32). As in the
previous paragraph we assume the quadratic form of the potential with respect to
the stress tensor. One can use different sets of scalar arguments of the stress tensor
satisfying (2.2.47), see for example [73],

nnn1 ··· σσσ ··· nnn1, nnn2 ··· σσσ ··· nnn2, nnn3 ··· σσσ ··· nnn3,

nnn1 ··· σσσ2 ··· nnn1, nnn2 ··· σσσ2 ··· nnn2, nnn3 ··· σσσ2 ··· nnn3

Figure 2.2 shows the components of the stress tensor in a Cartesian frameeeei, three
planes of symmetry characterized by the unit vectors±nnni and components of the
stress tensor with respect to the planes of symmetry. The stress tensor can be repre-
sented as follows
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σσσ = σnnn1nnn1
nnn1 ⊗ nnn1 + σnnn2nnn2nnn2 ⊗ nnn2 + σnnn3nnn3nnn3 ⊗ nnn3

+ τnnn1nnn2
(nnn1 ⊗ nnn2 + nnn2 ⊗ nnn1) + τnnn1nnn3

(nnn1 ⊗ nnn3 + nnn3 ⊗ nnn1)

+ τnnn2nnn3(nnn2 ⊗ nnn3 + nnn3 ⊗ nnn2)

with

σnnn1nnn1
= nnn1 ··· σσσ ··· nnn1, σnnn2nnn2 = nnn2 ··· σσσ ··· nnn2, σnnn3nnn3 = nnn3 ··· σσσ ··· nnn3,

τnnn1nnn2 = nnn1 ··· σσσ ··· nnn2, τnnn1nnn3 = nnn1 ··· σσσ ··· nnn3, τnnn2nnn3 = nnn2 ··· σσσ ··· nnn3

According to Sect. A.3.3 we use the following orthotropic invariants of the stress
tensor

Innn1nnn1
= σnnn1nnn1

, Innn2nnn2 = σnnn2nnn2 , Innn3nnn3 = σnnn3nnn3 ,

Innn1nnn2 = τ2
nnn1nnn2

, Innn1nnn3 = τ2
nnn1nnn3

, Innn2nnn3 = τ2
nnn2nnn3

(2.2.48)

Assuming that the creep potential is a function of six arguments introduced, the flow
rule (2.1.6) leads to the following creep equation

ε̇εεcr =
∂W

∂Innn1nnn1

nnn1 ⊗ nnn1 +
∂W

∂Innn2nnn2

nnn2 ⊗ nnn2 +
∂W

∂Innn3nnn3

nnn3 ⊗ nnn3

+
∂W

∂Innn1nnn2

nnn1 ··· σσσ ··· nnn2(nnn1 ⊗ nnn2 + nnn2 ⊗ nnn1)

+
∂W

∂Innn1nnn3

nnn1 ··· σσσ ··· nnn3(nnn1 ⊗ nnn3 + nnn3 ⊗ nnn1)

+
∂W

∂Innn2nnn3

nnn2 ··· σσσ ··· nnn3(nnn2 ⊗ nnn3 + nnn3 ⊗ nnn2)

(2.2.49)

The assumption of zero volumetric creep rate leads to

tr ε̇εεcr =
∂W

∂Innn1nnn1

+
∂W

∂Innn2nnn2

+
∂W

∂Innn3nnn3

= 0 (2.2.50)

From the partial differential equation (2.2.50) follows that the potentialW is a
function of five scalar arguments of the stress tensor. The characteristic system of
(2.2.50) is

dInnn1nnn1

ds
= 1,

dInnn2nnn2

ds
= 1,

dInnn3nnn3

ds
= 1 (2.2.51)

The above system of three ordinary differential equations has two independent inte-
grals. One can verify that the following invariants

J1 =
1

2
(Innn2nnn2 − Innn3nnn3), J2 =

1

2
(Innn3nnn3 − Innn1nnn1

), J3 =
1

2
(Innn1nnn1

− Innn2nnn2)

(2.2.52)
are integrals of (2.2.51). Only two of them are independent due to the relation
J1 + J2 + J3 = 0. If the principal directions of the stress tensor coincide with the
directionsnnni thenτnnninnnj

= 0, i 6= j and the above invariants represent the principal
shear stresses. An alternative set of integrals of (2.2.51)is
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J̃1 = Innn1nnn1 −
1

3
tr σσσ, J̃2 = Innn2nnn2 −

1

3
tr σσσ, J̃3 = Innn3nnn3 −

1

3
tr σσσ (2.2.53)

If the principal directions of the stress tensor coincide with nnni then the above invari-
ants are the principal values of the stress deviator. For theformulation of the creep
potential in terms of invariants the relatioñJ1 + J̃2 + J̃3 = 0 must be taken into
account.

In what follows we apply the invariants (2.2.52). The equivalent stress can be
formulated as follows

σ2
eq = 2β1 J2

1 + 2β2 J2
2 + 2β3 J2

3

+ 3β12 Innn1nnn2 + 3β13 Innn1nnn3 + 3β23 Innn2nnn3

(2.2.54)

The von Mises equivalent stress (2.2.5) follows from (2.2.54) by settingβ1 = β2 =
β3 = β12 = β13 = β23 = 1. Applying the flow rule (2.1.6) we obtain the following
creep equation

ε̇εεcr =
ε̇cr

eq

σeq

[

β1 J1(nnn2 ⊗ nnn2 − nnn3 ⊗ nnn3)

+β2 J2(nnn3 ⊗ nnn3 − nnn1 ⊗ nnn1)

+β3 J3(nnn1 ⊗ nnn1 − nnn2 ⊗ nnn2)

+
3

2
β12τnnn1nnn2(nnn1 ⊗ nnn2 + nnn2 ⊗ nnn1)

+
3

2
β13τnnn1nnn3(nnn1 ⊗ nnn3 + nnn3 ⊗ nnn1)

+
3

2
β23τnnn2nnn3(nnn2 ⊗ nnn3 + nnn3 ⊗ nnn2)

]

(2.2.55)

The equivalent stress and the creep equation includes six independent material
constants. Therefore six independent homogeneous stress states should be realized
in order to identify the whole set of constants. In addition,the dependence of the
creep rate on the equivalent stress must be fitted from the results of uni-axial creep
tests for different constant stress values. For example, ifthe power law stress func-
tion provides a satisfactory description of steady-state creep then the constantn
must be additionally identified.

An example of orthotropic creep is discussed in [163] for thealuminium alloy
D16AT. Plane specimens were removed from rolled sheet alongthree directions:
the rolling direction, the transverse direction as well as under the angle of 45◦ to the
rolling direction. Uni-axial creep tests were performed at273◦C and 300◦C within
the stress range 63-90 MPa. The results have shown that at 273◦C creep curves
depend on the loading direction while at 300◦C the creep behavior is isotropic.

Other cases. The previous models are based on the assumption of the quadratic
form of the creep potential with respect to the stress tensor. The most general
quadratic form can be formulated as follows

σ2
eq =

1

2
σσσ ······ (4)BBB ······ σσσ, (2.2.56)
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whereσeq plays the role of the equivalent stress. The fourth rank tensor (4)BBB must
satisfy the following restrictions

aaa ······ (4)BBB ······ aaa ≥ 0, aaa ······ (4)BBB = (4)BBB ······ aaa, ccc ······ (4)BBB = 000,

∀ aaa, ccc with aaa = aaaT, ccc = −cccT,
(2.2.57)

whereaaa andccc are second rank tensors. Additional restrictions follow from the as-
sumed symmetries of the steady state creep behavior. For example, if the orthogonal
tensorQQQ stands for a symmetry element, the structure of the tensor(4)BBB can be es-
tablished from the following equation

(4)BBB′ = BijklQQQ ··· eeei ⊗QQQ ··· eeej ⊗QQQ ··· eeek ⊗QQQ ··· eeel =(4)BBB, (2.2.58)

whereeeei, i = 1, 2, 3 are basis vectors.
The flow rule (2.1.6) provides the following generalized anisotropic creep equa-

tion

ε̇εεcr =
ε̇cr

eq

2σeq

(4)BBB ······ σσσ, ε̇cr
eq ≡ ∂W

∂σeq
(2.2.59)

The fourth rank tensors satisfying the restrictions (2.2.57) are well-known from
the theory of linear elasticity. They are used to represent elastic material proper-
ties in the generalized Hooke’s law. The components of thesetensors in a Carte-
sian coordinate system are given in the matrix notation in many textbooks on lin-
ear elasticity as well as in books and monographs on composite materials, e.g.
[6, 7, 29, 122, 256, 309]. Furthermore, different coordinate free representations of
fourth rank tensors of this type are discussed in the literature. For a review we re-
fer to [76]. One of these representations - the projector representation is applied in
[47, 48, 200] to constitutive modeling of creep in single crystal alloys under as-
sumption of the cubic symmetry.

Let us recall that (2.2.59) is the consequence of the creep potential hypothesis
and the quadratic form of the equivalent stress with respectto the stress tensor.
Similarly to the case of linear elasticity [309] one can prove that only eight basic
symmetry classes are relevant according to these assumptions. The basic symmetry
classes and the corresponding number of independent coordinates of the tensor(4)BBB
are listed in Table 2.1. The number of independent coordinates indicates the number
of material constants which should be identified from creep tests. This number can
be reduced if the volume constancy is additionally assumed.For example, in the
cases of transverse isotropy and orthotropic symmetry the number of independent
coordinates ofBBB reduces to 3 and 5, respectively (see previous paragraphs).

2.2.2.2 Non-classical Creep Equations. Non-classical effects are the depen-
dence of secondary creep rate on the kind of loading and second order effects,
see Sect. 2.2.1. Examples of such behavior are different creep rates under ten-
sile and compressive stress or the effect of reversal of the shear stress. The last
case is observed in creep tests on tubular specimens under applied torque. The
change of the direction of the applied torque leads to different values of the shear
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Table 2.1 Basic symmetry classes and number of independent coordinates of the tensor(4)BBB

Symmetry class Number of independent
coordinates of(4)BBB

triclinic symmetry 21
monoclinic symmetry 13
orthotropic or rhombic symmetry 9
trigonal symmetry 6
tetragonal symmetry 6
transverse isotropy or hexagonal symmetry 5
cubic symmetry 3
isotropic symmetry 2

strain rate. The effect of shear stress reversal is usually explained to be the result
of the anisotropy induced by the deformation process (e.g. anisotropic hardening)
or anisotropy induced by damage evolution. Phenomenological models of induced
anisotropy will be introduced in Sect. 2.3.2 and 2.4. Here weconsider the case of
initial anisotropy without discussion of histories of the deformation, damage or man-
ufacturing processes. Nevertheless, a phenomenological model of anisotropic creep
should be able to reflect the above mentioned effects since they are observed exper-
imentally. In order to describe non-classical effects the quadratic form of the creep
potential should be replaced by a more general form including all invariants of the
stress tensor for the assumed symmetry group. In this case the number of material
constants rapidly increases. Furthermore, the identification and verification of the
model requires creep tests under combined multi-axial stress states. In what follows
we limit ourselves to some remarks regarding the general structure of constitutive
equations and kinds of tests for the identification.

Transverse isotropy. The creep potential must satisfy the restriction (2.2.29)
leading to the partial differential equation (2.2.30). Theintegrals represent the set
of functionally independent arguments of the creep potential. The integrals are pre-
sented in Sect. A.3.2 for two transverse isotropy groups. The first group is formed
by all the rotations about a given axismmm, i.e

QQQ(ψmmm) = mmm ⊗mmm + cos ψ(III −mmm ⊗mmm) + sin ψmmm × III

The second group additionally includes rotations on the angle π about any axis
orthogonal tommm, i.e.

QQQ1 = QQQ(πppp) = 2ppp ⊗ ppp − III, det QQQ = 1, ppp ···mmm = 0

Let us note that there is an essential difference in these twogroups since the creep
potential depends on different non-quadratic arguments ofthe stress tensor. Here
we limit our considerations to the second case which is widely discussed in the
literature on anisotropic elasticity, plasticity and creep [58, 73, 84, 279, 286], where
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the following invariants are applied2

tr σσσ, tr σσσ2, tr σσσ3, mmm ··· σσσ ···mmm, mmm ··· σσσ2 ···mmm (2.2.60)

To be consistent with derivations in Sect. 2.2.2.1 let us usethe decomposition of the
stress tensor (2.2.34) leading to the following set of invariants

I1m = σmm = mmm ··· σσσ ···mmm,

I2m = tr σσσp = tr σσσ −mmm ··· σσσ ···mmm,

I3m =
1

2
tr sss2

p =
1

2
tr σσσ2

p −
1

4
(tr σσσp)

2

=
1

2

[

tr σσσ2 + (mmm ··· σσσ ···mmm)2
]

−mmm ··· σσσ2 ···mmm − 1

4
(tr σσσ −mmm ··· σσσ ···mmm)2,

I4m = τττm ··· τττm = mmm ··· σσσ2 ···mmm − (mmm ··· σσσ ···mmm)2 = (mmm × σσσ ···mmm) ··· (mmm × σσσ ···mmm)

I5m = τττm ··· sssp ··· τττm = mmm ··· σσσ3 ···mmm − 2(mmm ··· σσσ ···mmm)(mmm ··· σσσ2 ···mmm)

+ (mmm ··· σσσ ···mmm)3 − 1

2
(tr σσσ −mmm ··· σσσ ···mmm)

[

mmm ··· σσσ2 ···mmm − (mmm ··· σσσ ···mmm)2
]

(2.2.61)
The meaning of the first four invariants is explained in in Sect. 2.2.2.1. The last
cubic invariant is introduced insteadtr σσσ3. One can prove the following relation

tr σσσ3 = I3
1m + 3I1m I4m + 3I2m I3m +

3

2
I2m I4m +

1

2
I3
2m + 3I5m

Assuming that the creep potentialW is a function of five scalar arguments (2.2.61)
and applying the flow rule (2.1.6) we obtain the following creep equation

ε̇εεcr = h1mmm ⊗mmm + (h2−
1

2
h5 I4m)(III −mmm ⊗mmm) + h3σσσp + h4(τττm ⊗mmm + mmm ⊗ τττm)

+h5

(

τττm ⊗ τττm + mmm ⊗ σσσp ··· τττm + τττm ··· σσσp ⊗mmm
)

,
(2.2.62)

where

hi =
∂W

∂Iim
, i = 1, 2, . . . , 5

The last term in the right-hand side of (2.2.62) describes second order effects. The
meaning of these effects is obvious. In the case of non-zero “transverse shear stress”
vector

τττm = mmm ··· σσσ ··· (III −mmm ⊗mmm)

the elongation in the direction ofτττm can be considered. The vectorςςςm = sssp ··· τττm

belongs to the isotropy plane, i.e.ςςςm ··· mmm = 0. In the case thatςςςm 6= 000 (2.2.62)
describes an additional “transverse shear strain rate” effect.

2 For the description of elastic material behavior instead ofσσσ a strain tensor, e.g. the Cauchy-
Green strain tensor is introduced. The five transversely isotropic invariants are the argu-
ments of the strain energy density function.
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In order to formulate the creep constitutive equation one should specify an ex-
pression for the equivalent stress as a function of the introduced invariants. As an
example we present the equivalent stress by use of polynomials of the type (2.2.9)
and (2.2.10)

σeq = ασ1 + σ2 + γσ3, (2.2.63)

with

σ1 = µ11 I1m + µ12 I2m,

σ2 = µ21 I2
1m + µ22 I1m I2m + µ23 I2

2m + µ24 I3m + µ25 I4m,

σ3 = µ31 I3
1m + µ32 I2

1m I2m + µ33 I1m I2
2m + µ34 I3

2m + µ35 I1m I3m

+ µ36 I2m I3m + µ37 I1m I4m + µ38 I2m I4m + µ39 I5m

(2.2.64)

The equivalent stress (2.2.63) includes 16 material constants µij and two weight-
ing factorsα and γ. The identification of all material constants requires differ-
ent independent creep tests under multi-axial stress states. For example, in order
to find the constantµ39 creep tests under stress states with nonzero cubic invari-
ant I5m should be carried out. An example is the tension in the isotropy plane
combined with the transverse shear stress leading to the stress state of the type
σσσ = σ0nnn1 ⊗ nnn1 + τ0(nnn1 ⊗mmm + mmm ⊗ nnn1), whereσ0 > 0 andτ0 > 0 are the mag-
nitudes of the applied stresses,nnn1 is the direction of tension andnnn1 ···mmm = 0. In this
case

sssp =
1

2
σ0(nnn1 ⊗ nnn1 − nnn2 ⊗ nnn2), nnn1 ··· nnn2 = 0, τττm = τ0nnn1, I5m =

1

2
σ0τ2

0

By analogy to the non-classical models of isotropic creep discussed in Sect.
2.2.1 different special cases can be introduced. Settingγ = 0 in (2.2.64), second
order effects will be neglected. The resulting constitutive model takes into account
different behavior under tension and compression. To find the constantsµ11 andµ12

creep tests under tension (compression) along the direction mmm as well as tension
(compression) along any direction in the isotropy plane should be carried out. Set-
ting α = 0 the model with the quadratic form of the creep potential with5 constants
can be obtained. The assumption of the zero volumetric creeprate will lead to the
model discussed in Sect. 2.2.2.1.

Second order effects of anisotropic creep were discussed byBetten [52, 58].
He found disagreements between creep equations based on thetheory of isotropic
functions and the creep equation of the type (2.2.62) according to the potential hy-
pothesis and the flow rule. The conclusion was made that the potential theory leads
to restrictive forms of constitutive equations if comparedto the representations of
tensor functions.

Let us recall the results following from the algebra of isotropic tensor functions
[71]. In the case of transverse isotropy group characterized by the symmetry ele-
ments (A.3.18) the statement of the problem is to find the general representation of
the isotropic tensor function of the stress tensorσσσ and the dyadmmm ⊗ mmm (so-called
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structure tensor). The constitutive equation describing the creep behavior must be
found as follows

ε̇εεcr = fff (σσσ, mmm ⊗mmm),

where fff is an isotropic tensor function of two tensor arguments. Thegeneral repre-
sentation of this function is [73]

fff (σσσ, mmm ⊗mmm) = f1mmm ⊗mmm + f2(III −mmm ⊗mmm) + f3σσσ + f4σσσ2

+ f5(mmm ⊗mmm ··· σσσ + σσσ ···mmm ⊗mmm) + f6(mmm ⊗mmm ··· σσσ2+ σσσ2 ···mmm ⊗mmm),
(2.2.65)

where the scalarsfi, i = 1, . . . , 6, depend on the five invariants of the stress tensor
(2.2.60). Betten found that the last term in (2.2.65) is missing in the constitutive
equation which is based on the potential theory. In order to discuss the meaning
of the last term in (2.2.65) let us introduce the identities which follow from the
decomposition of the stress tensor by Eqs (2.2.34) and (2.2.36)

σσσ2 = I2msssp + (I3m +
1

4
I2
2m)(III −mmm ⊗mmm) + mmm ⊗ sssp ··· τττm + τττm ··· sssp ⊗mmm

+ (I1m +
1

2
I2m)(τττm ⊗mmm + mmm ⊗ τττm) + (I2

1m + I4m)mmm ⊗mmm + τττm ⊗ τττm,

(2.2.66)
mmm ⊗mmm ··· σσσ + σσσ ···mmm ⊗mmm = τττm ⊗mmm + mmm ⊗ τττm + 2I1mmmm ⊗mmm,

mmm ⊗mmm ··· σσσ2 + σσσ2 ···mmm ⊗mmm = mmm ⊗ sssp ··· τττm + τττm ··· sssp ⊗mmm

+ (I1m +
1

2
I2m)(τττm⊗mmm + mmm⊗τττm)

+ 2(I4m + I2
1m)mmm⊗mmm

After inserting (2.2.66), (2.2.34) and (2.2.36) into (2.2.65) we obtain the following
creep equation

ε̇εεcr = g1mmm ⊗mmm + g2(III −mmm ⊗mmm) + g3sssp + g4(mmm ⊗ τττm + τττm ⊗mmm)

+ g5(mmm ⊗ sssp ··· τττm + τττm ··· sssp ⊗mmm) + g6τττm ⊗ τττm

(2.2.67)
with

g1 = f1 + f4(I2
1m + I4m) + 2 f5 I1m + 2 f6(I4m + I2

1m),

g2 = f2 +
1

2
f3 I2m + f 4(I3m +

1

4
I2
2m),

g3 = f3 + I2m f4,

g4 = ( f4 + f6)(I1m +
1

2
I2m) + f5,

g5 = f4 + f6,

g6 = f4
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We observe that Eq. (2.2.67) based on the theory of isotropictensor functions does
not deliver any new second order effect in comparison to (2.2.62). The only dif-
ference is that the two last terms in (2.2.67) characterizing the second order ef-
fects appear with two different influence functions. The comparison of (2.2.67) with
(2.2.62) provides the following conditions for the existence of the potential

∂W

∂I1m
= g1,

∂W

∂I2m
= g2 +

1

2
g5 I4m,

∂W

∂I3m
= g3,

∂W

∂I4m
= g4,

∂W

∂I5m
= g5, g6 = g5

Furthermore, the functionsgi must satisfy the integrability conditions which can be
obtained by equating the mixed derivatives of the potentialwith respect to invariants,
i.e.

∂2W

∂Iim∂Ikm
=

∂2W

∂Ikm∂Iim
, i 6= k, i, k = 1, 2, . . . , 5

Let us note that the models (2.2.62) and (2.2.67) are restricted to the special case of
transverse isotropy. In the general case one should analyzethe creep potential with
the invariants listed in (A.3.26).

Other cases. Alternatively a phenomenological constitutive equation of aniso-
tropic creep can be formulated with the help of material tensors, e.g. [2]. Introduc-
ing three material tensorsAAA, (4)BBB and (6)CCC the equivalent stress (2.2.63) can be
generalized as follows

σeq = ασ1 + σ2 + γσ3 (2.2.68)

with

σ1 = AAA ······ σσσ, σ2
2 = σσσ ······ (4)BBB ······ σσσ, σ3

3 = σσσ ······ (σσσ ······ (6)CCC ······ σσσ) (2.2.69)

The structure of the material tensors must be established from the following restric-
tions

AAA′ = QQQ ··· AAA ···QQQT = AijQQQ ··· eeei ⊗QQQ ··· eeej = AAA,

(4)BBB′ = BijklQQQ ··· eeei ⊗QQQ ··· eeej ⊗QQQ ··· eeek ⊗QQQ ··· eeel =(4)BBB,

(6)CCC′ = CijklmnQQQ ··· eeei ⊗QQQ ··· eeej ⊗QQQ ··· eeek ⊗QQQ ··· eeel ⊗QQQ ··· eeem ⊗QQQ ··· eeen =(6)CCC,
(2.2.70)

whereQQQ is an element of the physical symmetry group. The creep potential hypoth-
esis and the flow rule (2.1.6) lead to the following creep equation

ε̇εεcr =
∂W

∂σeq

(

α
∂σ1

∂σσσ
+

∂σ2

∂σσσ
+ γ

∂σ3

∂σσσ

)

(2.2.71)

Taking into account the relations

∂σ1

∂σσσ
= AAA,

∂σ2

∂σσσ
=

(4)BBB ······ σσσ

σ2
,

∂σ3

∂σσσ
=

σσσ ······ (6)CCC ······ σσσ

σ2
3

(2.2.72)
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a generalized anisotropic creep equation can be formulatedas follows

ε̇εεcr = ε̇cr
eq

(

αAAA +
(4)BBB ······ σσσ

σ2
+ γ

σσσ ······ (6)CCC ······ σσσ

σ2
3

)

, ε̇cr
eq ≡

∂W

∂σeq
(2.2.73)

In [51, 265] the following anisotropic creep equation is proposed

ε̇εεcr = HHH + (4)MMM ······ σσσ + ((6)LLL ······ σσσ) ······ σσσ (2.2.74)

Comparing the Eqs (2.2.73) and (2.2.74) the material tensors HHH, (4)MMM and(6)LLL can
be related to the tensorsAAA, (4)BBB and(6)CCC.

The tensorsAAA, (4)BBB and (6)CCC contain 819 coordinates (AAA - 9, (4)BBB - 81, (6)CCC
- 729). From the symmetry of the stress tensor and the creep rate tensor as well as
from the potential hypothesis follows that “only” 83 coordinates are independent (AAA
- 6, (4)BBB - 21, (6)CCC - 56). Further reduction is based on the symmetry considerations.
The structure of material tensors and the number of independent coordinates can be
obtained by solving (2.2.70).

Another possibility of simplification is the establishing of special cases of
(2.2.73). For instance, equations with a reduced number of parameters can be de-
rived as follows

– α = 1, γ = 0:

σeq = σ1 + σ2, ε̇εεcr = ε̇cr
eq

(

AAA +
(4)BBB ······ σσσ

σ2

)

, (2.2.75)

– α = 0, γ = 1:

σeq = σ2 + σ3, ε̇εεcr = ε̇cr
eq

(

(4)BBB ······ σσσ

σ2
+

σσσ ······ (6)CCC ······ σσσ

σ2
3

)

, (2.2.76)

– α = 0, γ = 0:

σeq = σ2, ε̇εεcr = ε̇cr
eq

(

(4)BBB ······ σσσ

σ2

)

(2.2.77)

The last case has been discussed in Sect. 2.2.2.1. Examples of application of con-
stitutive equation (2.2.73) as well as different cases of symmetries are discussed in
[2, 9].

2.2.3 Functions of Stress and Temperature

In all constitutive equations discussed in Sects 2.2.1 and 2.2.2 the creep potential or
the equivalent creep rate must be specified as functions of the equivalent stress and
the temperature, i.e.

ε̇cr
eq =

∂W

∂σeq
= f (σeq, T)
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In [176] the functionf is termed to be the constitutive or response function. For the
formulation of constitutive functions one may apply theoretical foundations from
materials science with regard to mechanisms of creep deformation and related forms
of stress and temperature functions. Furthermore, experimental data including fam-
ilies of creep curves obtained from uni-axial creep tests for certain ranges of stress
and temperature are required. It is convenient to present these families in a form
of minimum creep rate vs. stress and minimum creep rate vs. temperature curves
in order to find mechanical properties of the material withinthe steady-state creep
range.

Many empirical functions of stress and temperature which allow to fit exper-
imental data have been proposed in the literature, e.g. [236, 250, 266, 292]. The
starting point is the assumption that the creep rate may be descried as a product of
two separate functions of stress and temperature

ε̇cr
eq = fσ(σeq) fT(T)

The widely used functions of stress are:

– power law

fσ(σeq) = ε̇0

∣

∣

∣

∣

σeq

σ0

∣

∣

∣

∣

n−1 σeq

σ0
(2.2.78)

The power law contains three constants (ε̇0, σ0, n) but only two of them are inde-
pendent. Instead ofε̇0 andσ0 one material constant

a ≡ ε̇0

σn
0

can be introduced.
– power law including the creep limit

fσ(σeq) = ε̇′0

(

σeq

σ′
0

− 1

)n′

, σeq > σ′
0

If σeq ≤ σ′
0 the creep rate is equal zero. In this caseσ′

0 is the assumed creep limit.
Let us note that the experimental identification of its valueis difficult, e.g. [266].

– exponential law

fσ(σeq) = ε̇0 exp
σeq

σ0

ε̇0, σ0 are material constants. The disadvantage of this expression is that it predicts
a nonzero creep rate for a zero equivalent stress

fσ(0) = ε̇0 6= 0

– hyperbolic sine law

fσ(σeq) = ε̇0 sinh
σeq

σ0
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For low stress values this function provides the linear dependence on the stress

fσ(σeq) ≈ ε̇0
σeq

σ0

Assuming the constant temperature equations for the equivalent creep rate can be
summarized as follows

ε̇cr
eq = aσn

eq Norton, 1929, Bailey, 1929,

ε̇cr
eq = b

(

exp
σeq

σ0
− 1

)

Soderberg, 1936,

ε̇cr
eq = a sinh

σeq

σ0
Prandtl, 1928, Nadai, 1938, McVetty, 1943,

ε̇cr
eq = a1σ

n1
eq + a2σn2

eq Johnson et al., 1963,

ε̇cr
eq = a

(

sinh
σeq

σ0

)n

Garofalo, 1965,

(2.2.79)

wherea, b, a1, a2, σ0, n, n1 and n2 are material constants. The dependence on the
temperature is usually expressed by the Arrhenius law

fT(T) = exp[−Q/RT],

whereQ andR denote the activation energy and the Boltzmann’s constant,respec-
tively.

For the use of stress and temperature functions one should take into account
that different deformation mechanisms may operate for different specific ranges of
stress and temperature. An overview is provided by the deformation mechanisms
maps proposed by Frost and Ashby [117], Fig. 2.3. Contours ofconstant strain rates
are presented as functions of the normalized equivalent stressσeq/G and the ho-
mologous temperatureT/Tm, whereG is the shear modulus andTm is the melting
temperature. For a given combination of the stress and the temperature, the map
provides the dominant creep mechanism and the strain rate.

Let us briefly discuss different regions on the map, the mechanisms of creep
deformation and constitutive functions derived in materials science. For compre-
hensive reviews one may consult [116, 156, 222]. The originsof the inelastic de-
formation at the temperature range0.5 < T/Tm < 0.7 are transport processes
associated with motion and interaction of dislocations anddiffusion of vacancies.
Here we limit our consideration to the two classes of physical models - dislocation
and diffusion creep. Various creep rate equations within the dislocation creep range
are based on the Bailey-Orowan recovery hypothesis. An internal barrier stressσint

being opposed to the dislocation movement is assumed. When the plastic strain oc-
curs the internal stress increases as a result of work hardening due to accumulation
of deformation and due to increase of the dislocation density. As the material is sub-
jected to the load and temperature over certain time, the internal stressσint recovers.
In the uni-axial case the rate of change of the internal stress is assumed as follows
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Figure 2.3 Schematic deformation-mechanism map (L.T.Creep - low temperature creep,
H.T.Creep - high temperature creep)

σ̇int = hε̇cr − rσint,

whereh andr are material properties related to hardening and recovery,respectively.
In the steady statėσint = 0 so that

ε̇cr =
rσint

h

Specifying the values forr, h andσint various models for the steady state creep rate
have been derived. An example is the following expression (for details of derivation
we refer to [116])

ε̇cr ∝
D

RT

σ4

G3
exp

(

− Q

RT

)

,

whereD is the diffusion coefficient.
Further models of dislocation creep are discussed under theassumption of

the climb-plus-glide deformation mechanism. At high temperatures and moderate
stresses, dislocations can climb as well as glide. The glideof dislocations produced
by the applied stress is opposed by obstacles. Due to diffusion of vacancies, the
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dislocations can climb around strengthening particles. The inelastic strain is then
controlled by the glide, while its rate is determined by the climb. The climb-plus-
glide mechanism can be related to the recovery-hardening hypothesis. The harden-
ing results from the resistance to glide due to interaction of moving dislocations
with other dislocations, precipitates, etc. The recovery mechanism is the diffusion
controlled climb which releases the glide barriers. The climb-plus-glide based creep
rate models can be found in [116, 117, 222]. The common resultis the power-law
creep

ε̇cr
eq ∝

(σeq

G

)n
exp

(

− Q

RT

)

(2.2.80)

Equation (2.2.80) can be used to fit experimental data for a range of stresses up
to 10−3G. The exponentn varies from 3 to about 10 for metallic materials. At
higher stresses above10−3G the power law (2.2.80) breaks down. The measured
strain rate is greater than the Eq. (2.2.80) predicts. Within the range of the power-
law break down a transition from the climb-plus-glide to theglide mechanism is
assumed [117]. The following empirical equation can be applied, e.g. [117, 222],

ε̇cr
eq ∝

[

sinh
(

α
σeq

G

)]n
exp

(

− Q

RT

)

, (2.2.81)

whereα is a material constant. Ifασeq/G < 1 then (2.2.81) reduces to (2.2.80).
At higher temperatures (T/Tm > 0.7) diffusion mechanisms control the creep

rate. The deformation occurs at much lower stresses and results from diffusion of
vacancies. The mechanism of grain boundary diffusion (Coble creep) assumes dif-
fusive transport of vacancies through and around the surfaces of grains. The devi-
atoric part of the stress tensor changes the chemical potential of atoms at the grain
boundaries. Because of different orientations of grain boundaries a potential gra-
dient occurs. This gradient is the driving force for the grain boundary diffusion.
The diffusion through the matrix (bulk diffusion) is the dominant creep mechanism
(Nabarro-Herring creep) for temperatures close to the melting point. For details con-
cerning the Coble and the Nabarro-Herring creep models we refer to [116, 222].
These models predict the diffusion controlled creep rate tobe a linear function of
the stress.

In addition to the dislocation and the diffusion creep, the grain boundary sliding
is the important mechanism for poly-crystalline materials. This mechanism occurs
because the grain boundaries are weaker than the ordered crystalline structure of
the grains [222, 271]. Furthermore, the formation of voids and micro-cracks on
grain boundaries contributes to the sliding. The whole deformation rate depends on
the grain size and the grain aspect ratio (ratio of the grain dimensions parallel and
perpendicular to the tensile stress direction). Samples with a larger grain size usually
exhibit a lower strain rate.
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2.3 Primary Creep and Creep Transients

In structural analysis applications it is often desirable to consider stress redistribu-
tions from the beginning of the creep process up to the creep with constant rate. Let
us note, that in a statically undetermined structure stressredistributions take place
even if primary creep is ignored. In the case of rapid changesof external loading
one must take into account transient effects of the materialbehavior. Let us discuss
some experimental results related to creep under variable multi-axial loading con-
ditions. The majority of multi-axial creep tests have been performed on thin-walled
tubes under combined action of tension (compression) forceand torque. In this case
the uniform stress stateσσσ = σnnn ⊗ nnn + τ(nnn ⊗ mmm + mmm ⊗ nnn) is assumed, whereσ
andτ are calculated from the force and torque as well as the geometry of the cross
section (see Sect. 1.1.2). Figure 2.4 presents a sketch of experimental data for type
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Figure 2.4 Transient creep at combined tension and torsion. Effect of the normal stress
reversal.a Normal strain vs. time,b shear strain vs. time (after [148])
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304 steel (214Cr-1Mo) at 600◦C [148]. A tube was loaded the first 5 hours by the
constant tension force and the constant torque. After that the direction of the force
was reversed while the torque kept constant. The normal strain vs. time creep curve
under compressive force after the reversal differs substantially from the reference
creep curve under tensile force, Fig. 2.4a. The absolute value of the strain rates be-
fore and after the reversal differs significantly. Furthermore, the shear strain vs. time
creep curve is influenced by the reversal of the axial force, Fig. 2.4b.

Figure 2.5 shows a sketch of experimental results obtained in [248] for IN-
CONEL Alloy 617 (NiCr22Co12Mo) tubes at 900◦C under cyclic torsion. Every
100 h the applied torque was reversed leading to the change ofthe sign of the shear
stress. The inelastic shear strain accumulated after each cycle of positive (negative)
torque decreases rapidly after few cycles of reversals. Similar behavior is reported
in [238] for the type 304 steel, where, in addition, the effect of thermal exposure
before and during the loading is discussed. Creep behavior of steels is usually ac-
companied by the thermally induced evolution of structure of carbide precipitates
(coarsening or new precipitation). The effect of ageing hasa significant influence
on the transient creep of steels as discussed in [238]. For example, the decrease of
inelastic shear strain under alternating torsion was not observed if tubular specimens
were subjected to the thermal exposure within the time interval of 500 h before the
loading.

Additional effects have been observed in the case of reversals of the applied
torque combined with the constant tension force, Fig. 2.6. First, the axial strain
response is significantly influenced by the cyclic torsion. Second, the rate of the
shear strain depends on the sign of the applied torque. Such aresponse indicates the
anisotropic nature of the hardening processes.

Multi-axial creep behavior is significantly influenced by the deformation history.
As an example, Fig. 2.7 presents a sketch of results reportedin [157] for type 304
stainless steel. Tubular specimens were first loaded up to the stressσ1 leading to
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Figure 2.6 Creep at combined tension and torsion. Effect of the shear stress reversals.a
Normal strain vs. time,b shear strain vs. time (after [248])

the plastic strain of3%. After that the specimens were unloaded toσ0. Subsequent
creep tests have been performed under combined constant normal strainσ and shear
strain τ. Different stress states leading to the same value of the vonMises stress
σvM =

√
σ2 + 3τ2 = σ0 were realized. The results show that the tensile creep

curve of the material after plastic pre-straining differs significantly from the creep
curve of the “virgin material” (curve a). Furthermore, the von Mises creep strain
vs. time curves after plastic pre-straining depend significantly on the type of the
applied stress state (compare, for example, tension, curvea, torsion, curve b, and
compression, curve e).

In this section we discuss phenomenological models to describe primary creep
and creep transients under multi-axial stress states. We start with models of time and
strain hardening. After that we introduce the concept of kinematic hardening which
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is widely used for the characterization of transient creep effects under constant and
varying loading. Our purpose is to discuss general ideas rather than enter into details
of empirical functions of stress and temperature as well as different forms of evolu-
tion equations for hardening variables (the so-called hardening rules). Regarding the
hardening rules one may consult the comprehensive reviews [87, 237] and mono-
graphs [174, 185, 208, 301]. For classification and assessment of different unified
models of plasticity-creep interaction we refer to [148, 149].

2.3.1 Time and Strain Hardening

The time hardening model assumes a relationship between theequivalent creep rate,
the equivalent stress and the time at fixed temperature, i.e.

ft(ε̇cr
eq, σeq, t) = 0

The strain hardening model postulates a relationship between the equivalent creep
rate, the equivalent creep strain and the equivalent stressat fixed temperature. In this
case

fs(ε̇cr
eq, εcr

eq, σeq) = 0

Figure 2.8 illustrates the uni-axial creep response after reloading (stress jump from
σ1 to σ2 at t = tr). Based on the time hardening model the strain rate att ≥ tr is
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Figure 2.8 Creep response at variable loading (the open circles denotetypical experimental
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determined by the stressσ2 and the timetr only. Thus the creep curve fort ≥ tr

can be obtained by translation of the curveBC to the pointD. Following the strain
hardening model the strain rate depends on the stress and theaccumulated strain.
The creep curve after the stress jump can be determined by translating the curveAC
(the creep curve for the stressσ2 starting from the creep strainεcr

A accumulated in
time tr) along the time axis. It can be shown that for specific functions of stress, time
and strain as well as under the assumption of the constant stress and temperature the
strain and the time hardening models lead to the same description. For example, if
we set

ε̇cr
eq = aσn

eqtm (2.3.1)

according to the time hardening witha, n andm as the material constants the inte-
gration with respect to the time variable assumingσeq = const andεcr

eq = 0 at t = 0
leads to

εcr
eq = aσn

eq
1

m + 1
tm+1 (2.3.2)

On the other hand applying the strain hardening model, the creep equation can be
formulated as

ε̇cr
eq = bσk

eq(εcr
eq)

l (2.3.3)

Taking into account (2.3.2) the time variable can be eliminated from (2.3.1). As a
result the following relations between the material constants can be obtained

b = [a(m + 1)m]
1

m+1 , k =
n

m + 1
, l =

m

m + 1

Vice versa, the strain hardening equation (2.3.2) can be integrated for the special
choice ofk andl and forσeq = const. Again, if εcr

eq = 0 at t = 0 we obtain (2.3.2).
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Applying the time hardening model the von Mises-Odqvist creep theory (see
Sect. 2.2) can be generalized as follows

ε̇εεcr =
3

2
aσn−1

vM tmsss (2.3.4)

By analogy one can formulate the creep constitutive equation with the strain hard-
ening

ε̇εεcr =
3

2
bσk−1

vM (εcr
vM)lsss (2.3.5)

The time and the strain hardening models provide simple empirical description
of the uni-axial creep curve within the range of primary creep and are still popular
in characterizing the material behavior, e.g. [137, 145, 171]. Despite the simplicity,
both the models suffer from significant limitations, even ifapplied stress and tem-
perature are constant. The disadvantage of the time hardening model is that the time
variable appears explicitly in equation (2.3.1) for the creep rate. An additional draw-
back is that the constantsm andl take usually the values−1 < m < 0, −1 < l < 0
as the result of curve fitting. Ifεcr

eq = 0 at t = 0 then Eq. (2.3.3) provides an infinite
starting creep rate. One can avoid this problem in a time-step based numerical pro-
cedure assuming a small non-zero creep equivalent strain atthe starting time step.
Finally, both models can be applied only for the case of the constant or slowly vary-
ing stresses. Transient creep effects under rapid changes of loading and particularly
in the case of stress reversals cannot be described.

Further details of time and strain hardening models can be found in [173, 250].
In [173] a modified strain hardening model is proposed based on the idea of creep
strain origins.

2.3.2 Kinematic Hardening

The common approach in describing transient creep effects under complex loading
paths is the introduction of internal state variables and appropriate evolution equa-
tions (the so-called hardening rules). The scalar-valued internal state variables are
introduced in the literature to characterize isotropic hardening and ageing processes.
An example will be discussed in Sect. 2.4.1.3. Several “non-classical” effects ob-
served in tests under non-proportional loading have motivated the use of tensor-
valued variables (usually second rank tensors).

The idea of kinematic hardening (translation of the yield surface in the stress
space) originates from the theory of plasticity and has beenintroduced by Prager
[257]. In the creep mechanics the kinematic hardening was proposed by Malinin
and Khadjinsky [203, 204]. The starting point is the additive decomposition of the
stress tensor into two parts:σσσ = σ̄σσ + ααα, whereσ̄σσ is called the active or the effective
part of the stress tensor andααα denotes the additional or translation part of the stress
tensor (back stress tensor). The introduced tensors can be further decomposed into
spherical and deviatoric parts
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σ̄σσ =
1

3
tr σ̄σσIII + s̄ss, tr s̄ss = 0,

ααα =
1

3
tr αααIII + βββ, tr βββ = 0,

σσσ =
1

3
(tr σ̄σσ + tr ααα)III + sss, sss = s̄ss + βββ

(2.3.6)

It is assumed that the inelastic strain rate is determined bythe active part of the stress
tensor. The creep potential is then a function of the active part of the stress tensor, i.e.
W = W(σ̄σσ) = W(σσσ − ααα), e.g. [245]. As in the case of the classical isotropic creep
(Sect. 2.2.1.1) only the second invariant of the deviators̄ss is considered. Introducing
the von Mises equivalent stress

σ̄vM ≡
√

3

2
s̄ss ······ s̄ss =

√

3

2
(sss − βββ) ······ (sss − βββ) (2.3.7)

the flow rule (2.1.6) leads to the following constitutive equation

ε̇εεcr =
3

2

ε̇cr
vM

σ̄vM
s̄ss, ε̇vM ≡

√

2

3
ε̇εεcr ······ ε̇εεcr (2.3.8)

The equivalent creep rate can be expressed by the use of stress and temperature
functions discussed in Sect. 2.2.3. For example, with the power law stress function
and the Arrhenius temperature dependence

ε̇cr
vM = aσ̄n

vM, a = a0 exp

(

− Q

RT

)

(2.3.9)

Equations (2.3.8) contain the deviatoric part of the back stressβββ. This internal state
variable is defined by the evolution equation and the initialcondition. In [201, 202]
the following evolution equation is postulated

β̇ββ =
2

3
bε̇εεcr − g(αvM)

αvM
βββ (2.3.10)

with

αvM ≡
√

3

2
βββ ······ βββ

For the functiong various empirical relations were proposed. One example is [201,
202]

g(αvM) = cαn
vM, c = c0 exp

(

− Qr

RT

)

Equation (2.3.10) is the multi-axial utilization of the Bailey-Orowan recovery hy-
pothesis, see Sect. 2.2.3.b and c0 are material constants andQr is the activation
energy of recovery.

Let us show how the model behaves for the uni-axial homogeneous stress state
σσσ(t) = σ(t)nnn ⊗ nnn, whereσ(t) is the magnitude of the applied stress andnnn is the
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Figure 2.9 Primary and secondary creep stages of a uni-axial creep curve

unit vector. Withααα(0) = 000 one can assume thatααα(t) is coaxial with the stress tensor.
Therefore one can write [201, 202]

ααα = αnnn ⊗ nnn, βββ = α

(

nnn ⊗ nnn − 1

3
III

)

, σ̄vM = |σ − α|, αvM = |α|

From Eqs (2.3.9) and (2.3.10) follows

ε̇cr = asign(σ − α)|σ − α|n, ε̇cr ≡ nnn ··· ε̇εεcr ··· nnn,

α̇ = bε̇cr − csignα|α|n
(2.3.11)

Let us assume thatσ(t) = σ0 > 0, α(0) = 0, σ0 − α > 0 and introduce the variable
H = α/σ0. From (2.3.11) we obtain

ε̇cr = aσn
0 (1 − H)n,

Ḣ = σn−1
0 [ba(1 − H)n − cHn]

(2.3.12)

The constitutive and evolution Eqs (2.3.12) describe the primary and the secondary
stages of a uni-axial creep curve, Fig. 2.9. In the considered case of the uni-axial
tension the parameter0 ≤ H < H∗ < 1 is equal to zero at the beginning of the
creep process and increases over time. In the steady stateH = H∗, whereH∗ is the
saturation value. From the second equation in (2.3.12) we obtain

H∗ =
1

1 + µ
1
n

, µ ≡ c

ab
(2.3.13)

The minimum creep rate in the steady state is calculated by

ε̇cr
min = aσn

0 (1 − H∗)n = ãσn
0 , ã ≡ a(1 − H∗)n (2.3.14)

The constants̃a andn can be obtained from the experimental data of steady state
creep. For the given value ofH∗ the second equation in (2.3.12) can be integrated
providing the duration time of primary creeptpr (see Fig. 2.9)
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Figure 2.10 Uni-axial creep after unloading. Simulations based on Eqs (2.3.15) for the case
n = 3 andH∗ = 0.7. a Creep strain vs. time,b hardening variable vs. time.

tpr =
ϕ(H∗)
baσn

0

, ϕ(H∗) =

H∗
∫

0

dH

(1 − H)n − µHn

From the first equation in (2.3.12) the creep strainεcr
pr follows at t = tpr (see Fig.

2.9) as

εcr
pr =

σ0

b

H∗
∫

0

(1 − H)ndH

(1 − H)n − µHn

The above equations can be used for the identification of material constants.
To discuss the model predictions for the case of the uni-axial cyclic loading let

us introduce the following dimensionless variables

σ̃ =
σ(t)

σ0
, τ =

t

tpr
, ǫ =

εcr

a(1 − H∗)σn
0 tpr

,

where σ0 denotes the constant stress value in the first loading cycle.Equations
(2.3.11) take the form

dǫ

dτ
= asign(σ̃ − H)

|σ̃ − H|n
1 − H∗ ,

dH

dτ
= ϕ(H∗)

[

sign(σ̃ − H)|σ̃ − H|n − sign(H)

(

1 − H∗
H∗

)n

|H|n
]

(2.3.15)
Figures 2.10 and 2.11 illustrate the results of the numerical integration of (2.3.15)
with n = 3, H∗ = 0.7 and the initial conditionsǫ(0) = 0 andH(0) = 0. In the first
case presented in Fig. 2.10 we assumeσ = σ0 within the time interval[0, 2tpr ], so
that the hardening variable increases up to the saturation value and remains constant.
The creep curve exhibits both the primary and the secondary stages, Fig. 2.10b. At
t = 2tpr we assume a spontaneous unloading, i.e.σ = 0. We observe that the model
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Figure 2.11 Uni-axial creep under cyclic loading. Simulations based onEqs (2.3.15) for the
casen = 3 andH∗ = 0.7. a Creep strain vs. time,b hardening variable vs. time.

(2.3.15) is able to describe the creep recovery (see Fig. 1.3b). Figure 2.11 presents
the numerical results for the case of cyclic loading. Three loading cycles with the
constant stresses±σ0 and the holding time∆t = 2tpr, Fig. 2.11a, are considered.
We observe that the model (2.3.15) predicts identical creepresponses for the first
and the third loading cycle.

Let us give some comments on the model predictions under multi-axial stress
states. For this purpose we consider the case that the stressdeviatorsss is the known
constant tensor within a given interval of time[t0, t]. Equations (2.3.8) and (2.3.10)
can be rewritten as follows

ε̇εεcr =
3

2

f (σ̄vM)

σ̄vM
(sss − βββ),

β̇ββ = b
f (σ̄vM)

σ̄vM
(sss − βββ)− g(αvM)

αvM
βββ

(2.3.16)

In the steady creep stateβββ = βββ∗, whereβββ∗ is the saturation value of the back stress
deviator. From the second equation in (2.3.16) it follows

b
f (σ̄vM∗ )

σ̄vM∗
(sss − βββ∗) =

g(αvM∗)

αvM∗
βββ∗, (2.3.17)

where

σ̄vM∗ =

√

3

2
(sss − βββ∗) ······ (sss − βββ∗), αvM∗ =

√

3

2
βββ∗ ······ βββ∗

The double inner product of (2.3.17) with itself results in

[b f (σ̄vM∗ )]
2 = [g(αvM∗ )]

2

Since f (σ̄vM∗) > 0 andg(αvM∗) > 0 we obtain

b f (σ̄vM∗) = g(αvM∗) (2.3.18)
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From (2.3.17) it follows

βββ∗ =
αvM∗

σ̄vM∗ + αvM∗
sss ⇒ σ̄vM∗ = σvM + αvM∗ (2.3.19)

Now the steady state value of the back stress deviator can be calculated

βββ∗ = αvM∗
sss

σvM
(2.3.20)

Let us assume power functions forf andg. Then from (2.3.18) it follows

ba(σvM − αvM∗)
n = cαn

vM∗

As in the uni-axial case we introduce the hardening variableH = αvM/σvM. The
saturation valueH∗ is then determined by (2.3.13). From the first Eq. in (2.3.16)we
obtain

ε̇εεcr
st =

3

2
ãσn−1

vm sss, ã ≡ a(1 − H∗)n (2.3.21)

We observe that the kinematic hardening model (2.3.16) results in the classical
Norton-Bailey-Odqvist constitutive equation of steady-state creep discussed in Sect.
2.2.1. This model predicts isotropic steady state creep independently from the initial
condition for the back stress deviatorβββ. Furthermore, different stress states leading
to the same value of the von Mises equivalent stress will provide the same steady
state value of the equivalent creep rate.

The model (2.3.16) is applied in [202, 245] for the description of creep for dif-
ferent materials under simple or non-proportional loadingconditions. It is demon-
strated that the predictions agree with experimental results. However, in many cases
deviations from the Norton-Bailey-Odqvist type steady state creep can be observed
in experiments. For example, in the case shown in Fig. 2.6 thesteady state shear
creep rate changes significantly after the shear stress reversals, although the von
Mises equivalent stress remains constant. The results presented in Fig. 2.7 indicate
that the initial hardening state due to plastic pre-strain is the reason for the stress
state dependence of the subsequent creep behavior. This effect cannot be described
by the model (2.3.16).

The models with the back stress of the type (2.3.16) are usually termed to be
the models with anisotropic hardening, e.g. [202]. The typeof anisotropy is then
determined by the symmetry group of the back stress tensor ordeviator. The sym-
metry group of any symmetric second rank tensor includes always nine elements,
e.g. [199]. For the tensorβββ the symmetry elements are

QQQβββ = ±nnn1 ⊗ nnn1 ± nnn2 ⊗ nnn2 ± nnn3 ⊗ nnn3, (2.3.22)

wherennni are the principal axes. In order to verify the assumed symmetries of hard-
ening one should perform creep tests with non-proportionalloading of the following
type. During the first cycle a homogeneous constant stress state with the deviatoric
partsss should be applied over a period of time[0, t1], t1 < tpr. During the second
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loading cycle the stress statesQQQi ··· sss ··· QQQT
i should be applied, where the orthogonal

tensorsQQQi do not belong to the symmetry group ofsss. Among all stress states of this
type the stress statesQQQβββ ··· sss ··· QQQT

βββ should exist leading to the same (with respect to
the scatter of experimental data) creep response after reloading.

As shown in [72] kinematic hardening of the type (2.3.16) leads to a restrictive
form of orthotropic inelastic behavior. In order to demonstrate this let us write down
the back stress deviator in the following form

βββ = β1nnn1 ⊗ nnn1 + β2nnn2 ⊗ nnn2 − (β1 + β2)nnn3 ⊗ nnn3

= β1(nnn1 ⊗ nnn1 − nnn3 ⊗ nnn3) + β2(nnn2 ⊗ nnn2 − nnn3 ⊗ nnn3),

whereβ1 andβ2 are the principal values andnnn1, nnn2 andnnn3 are the principal direc-
tions ofβββ. For the given back stress deviatorβββ the equivalent stress (2.3.7) takes the
form

σ̄2
vM = 3 J̃2

1

(

1 − β1

J̃1

)2

+ 3 J̃2
2

(

1 − β2

J̃2

)2

+
3

2
J̃1 J̃2

(

1 − β1

J̃1

)(

1 − β2

J̃2

)

+ 3I2
nnn1nnn2

+ 3I2
nnn1nnn3

+ 3I2
nnn2nnn3

,
(2.3.23)

where the invariants̃Ji are defined by Eqs (2.2.53) and the invariantsInnninnnj
are defined

by Eqs (2.2.48). Steady state creep with initial orthotropic symmetry is discussed in
Sect. 2.2.2. In this case the von Mises type equivalent stress includes 6 invariants
and 6 independent material constants. The equivalent stress (2.3.23) contains all
6 orthotropic invariants. However, the last three terms (three shear stresses with
respect to the three planes of the orthotropic symmetry) arenot affected by the
hardening. Furthermore, in the steady state range these terms vanish since the back
stress deviatorβββ∗ is coaxial with the stress deviator according to (2.3.20).

The possibilities to improve the predictions of the kinematic hardening model
are:

– Introduction of additional state variables like isotropichardening variable, e.g.
[87], ageing variable, e.g. [238], or damage variables, e.g. [101]. Models with
damage variables will be discussed in Sect. 2.4.

– Formulation of the creep potential as a general isotropic function of two tensorsσσσ
andααα. Such an approach is proposed in [72] for the case of plasticity and includes
different special cases of kinematic hardening,

– Consideration of the initial anisotropy of the material behavior, e.g. [148].

Creep models with kinematic hardening of the type (2.3.8) and different specific
forms of the hardening evolution equation are discussed in [158, 159, 202, 238, 245,
272] among others. For the description of creep and creep-plasticity interaction at
complex loading conditions a variety of unified models is available including the
hardening variables as second rank tensors. For details we refer to [174, 176, 185,
208]. Several unified models are reviewed and evaluated in [148, 149]. The historical
background of the development of non-linear kinematic hardening rules is presented
in [87].
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2.4 Tertiary Creep and Creep Damage

Tertiary creep stage is the final part of the creep process. Ina uni-axial creep curve
tertiary creep is observed as the increase of the creep rate.The shape of the final
part of the creep curve and the duration of the tertiary creepdepends on the material
composition, the stress level and the temperature. For somestructural steels, the
tertiary creep is the major part of the whole creep process, e.g. [105, 242].

The origins of tertiary creep are progressive damage processes including the
formation, growth and coalescence of voids on grain boundaries, coarsening of pre-
cipitates and environmental effects. The voids may nucleate earlier during the creep
process, possibly at primary creep stage or even after spontaneous deformation. The
initially existing micro-defects have negligible influence on the creep rate. As their
number and size increase with time, they weaken the materialproviding the de-
crease in the load-bearing capacity. The coalescence of cavities or propagation of
micro-cracks lead to the final fracture. Creep fracture is usually inter-granular [33].
Dyson [99] distinguishes three main categories of creep damage: the strain induced
damage, the thermally induced damage and the environmentally induced damage.
The strain induced damage may be classified as follows [101]

– excessive straining at constant load,
– grain boundary cavitation and
– progressive multiplication of the dislocation substructure

The first two damage mechanisms occur in all poly-crystalline materials, whereas
the third one is essential for nickel-based super-alloys.

The thermally induced damage mechanisms include material ageing processes
which lead to the loss of strength and contribute to the nucleation and growth of
cavities. The example of the thermally induced ageing includes the coarsening of
carbide precipitates for ferritic steels (increase of volume fraction of carbide precip-
itates or new precipitation), e.g. [251]. The rate of ageingdoes not depend on the
applied stress, but is influenced by the temperature and can be identified by exposing
test-pieces to thermal environment.

The environmentally induced damage (corrosion, oxidation, etc.) appears due
to the attack of chemical species contained within the surrounding medium. The
environmental damage rate can be inversely related to the test-piece (component)
dimensions [99].

The dominance of a creep damage mechanism depends on the alloy composi-
tion, on the fabrication route and on the service conditions. For several metals and
alloys, fracture mechanism maps are available [33]. By analogy with the deforma-
tion mechanism maps, regions with different fracture modesare indicated depending
on the stress and the temperature ranges.

Physical modeling of creep damage is complicated by the factthat many differ-
ent mechanisms may operate and interact in a specific material under given loading
conditions. This interaction should be taken into account in the damage rate equa-
tions. Models related to the grain boundary cavitation are discussed and reviewed in
[155, 271].
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The characterization of tertiary creep under multi-axial stress states is the im-
portant step in a creep analysis of engineering structures.A lifetime prediction of a
specific load bearing component designed for creep, or a residual lifetime estima-
tion of a structure operating at elevated temperature requires a model which takes
into account tertiary creep and damage evolution under multi-axial stress states.

The damage rate and consequently the creep rate are determined by the stress
level, the accumulated damage and the temperature. These dependencies can be es-
tablished based on experimental data from the uni-axial creep testing. If the material
is subjected to multi-axial loading, the kind of stress state has a significant influence
on the damage growth. Tension and compression lead to different creep rates. Dif-
ferent stress states corresponding to the same von Mises equivalent stress lead, in
general, to different equivalent tertiary creep rates while the equivalent strain rate in
the secondary stage is approximately the same. These facts are established from the
data of creep tests under combined tension and torsion, e.g.[169, 170], as well as
from biaxial and triaxial creep tests [282, 283]. Stress state effects must be consid-
ered in the damage evolution equation. In Sect. 2.4.1 we discuss various possibilities
to characterize the tertiary creep behavior by means of scalar valued damage para-
meters. Under non-proportional loading conditions, the additional factor is the in-
fluence of the damage induced anisotropy. Examples are creeptests under combined
tension and alternating torsion, e.g. [218], and creep tests under biaxial loading with
alternating direction of the first principal stress [283]. In both cases the assumption
of isotropic creep behavior and the scalar measure of damagelead to disagreement
with experimental observations. In Sect. 2.4.2 we review some experimental results
illustrating the damage induced anisotropy and discuss creep-damage models with
tensor-valued damage variables.

2.4.1 Scalar-Valued Damage Variables

Many microstructural observations show the directional effect of creep damage. For
example, during a cyclic torsion test on copper voids nucleate and grow predomi-
nantly on those grain boundaries, which are perpendicular to the first principal di-
rection of the stress tensor, e.g. [134]. Creep damage has therefore an anisotropic
nature and should be characterized by a tensor. However, if the initially isotropic
material is subjected to constant or monotonic loading the influence of the damage
anisotropy on the observed creep behavior, i.e. the strain vs. time curves, is not sig-
nificant. If the state of damage is characterized by a tensor (see Sect. 2.4.2) then such
a tensor can be assumed to be coaxial with the stress tensor under monotonic loading
conditions. In such a case only the scalar damage measures will enter the creep con-
stitutive equation. Below we introduce different models oftertiary creep including
the phenomenological, the so-called micromechanically consistent and mechanism
based models. The effect of damage is described by means of scalar valued damage
parameters and corresponding evolution equations. The stress state influences are
expressed in the equivalent stress responsible for the damage evolution.
2.4.1.1 Kachanov-Rabotnov Model. The phenomenological creep-damage
equations were firstly proposed by L. Kachanov [150] and Rabotnov [263]. A new
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internal variable has been introduced to characterize the “continuity” or the “dam-
age” of the material. The geometrical interpretation of thecontinuity variable starts
from changes in the cross-section area of a uni-axial specimen. Specifying the initial
cross-section area of a specimen byA0 and the area of voids, cavities, micro-cracks,
etc. byAD, the Kachanov’s continuity is defined as follows (see [152])

ψ =
A0 − AD

A0

The valueψ = 1 means the virgin, fully undamaged state, the conditionψ = 0
corresponds to the fracture (completely damaged cross-section).

Rabotnov [263, 264, 265] introduced the dual damage variable ω. In [264] he
pointed out that the damage state variableω “may be associated with the area frac-
tion of cracks, but such an interpretation is connected witha rough scheme and is
therefore not necessary”. Rabotnov assumed that the creep rate is additionally de-
pendent on the current damage state. The constitutive equation should have the form

ε̇cr = ε̇cr(σ, ω)

Furthermore, the damage processes can be reflected in the evolution equation

ω̇ = ω̇(σ, ω), ω|t=0 = 0, ω < ω∗,

whereω∗ is the critical value of the damage parameter for which the material fails.
With the power functions of stress and damage the constitutive equation may be
formulated as follows

ε̇cr =
aσn

(1 − ω)m
(2.4.1)

Similarly, the damage rate can be expressed by

ω̇ =
bσk

(1 − ω)l
(2.4.2)

These equations contain the material dependent constants:a, b, n, m, l, k. It is easy
to prove that for the damage free state (ω = 0), the first equation results in the
power law creep constitutive equation.

Settingm = n the first equation can be written as

ε̇cr = aσ̃n, (2.4.3)

where σ̃ = σ/(1 − ω) is the so-called net-stress or effective stress. In this case
(2.4.3) is a generalization of the Norton-Bailey secondarycreep law for the descrip-
tion of tertiary creep process. Lemaitre and Chaboche [185]proposed the effective
stress concept to formulate constitutive equations for damaged materials based on
available constitutive equation for “virgin” materials. An interpretation can be given
for a tension bar, Fig. 2.12. HereA0 denotes the initial cross-section area of the bar,
Fig. 2.12a. From the given tensile forceF the stress can be computed asσ = F/A0.
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Figure 2.12 Strain and damage of a bar.a Initial state,b damaged state,c fictitious undam-
aged state

The axial strain for the loaded barε = (l − l0)/l0 can be expressed as a func-
tion of the stress and the actual damageε = f (σ, ω), Fig. 2.12b. For the effective
cross-sectionÃ = A0 − AD the effective stress is

σ̃ =
F

Ã
=

σ

1 − ω
(2.4.4)

Now a fictitious undamaged bar with a cross-section areaÃ, Fig. 2.12c, having
the same axial strain response as the actual damaged barε = f (σ̃) = f (σ, ω) is
introduced. The strain equivalence principle [183] statesthat any strain constitutive
equation for a damaged material may be derived in the same wayas for a virgin
material except that the usual stress is replaced by the effective stress. Thus the
constitutive equation for the creep rate (2.4.3) is the power law generalized for a
damaged material.

Let us estimate the material constants in the model

ε̇cr = aσ̃n, ω̇ =
bσk

(1 − ω)l
(2.4.5)

based on uni-axial creep curves, Fig. 2.13. Settingω = 0 the first equation yields the
minimum creep rate. The material constantsa andn can be determined from steady
state creep. Leṫεcr

min1 and ε̇cr
min2 be minimum creep rates at the constant stressesσ1

andσ2, respectively. Then the material constants can be estimated from

n =
log(ε̇cr

min1/ε̇cr
min2)

log(σ1/σ2)
, a =

ε̇cr
min1

σn
1

=
ε̇cr

min2

σn
2

(2.4.6)
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Figure 2.13 Phenomenological description of uni-axial creep curves

For a constant stressσ the second equation (2.4.5) can be integrated as follows

ω∗
∫

0

(1 − ω)ldω =

t∗
∫

0

bσkdt

with t∗ as time to fracture of the specimen. Setting the critical damage valueω∗ = 1
we obtain

t∗ =
1

(l + 1)bσk
(2.4.7)

This equation describes the failure time - applied stress relation. For a number of
metals and alloys the experimental data of the long-term strength can be approxi-
mated by a straight line in a double logarithmic scale. Note,that such an approxi-
mation is valid only for a specific stress range, Fig. 2.14. Inthe special casek = l
the material constantsk andb may be estimated from the long-term strength curve
as follows

k =
log(t∗2/t∗1)

log(σ1/σ2)
, b =

1

t∗1(k + 1)σk
1

=
1

t∗2(k + 1)σk
2

with t∗1, t∗2 as failure times corresponding to the applied stressesσ1 andσ2. Inte-
gration of the second Eq. (2.4.5) with respect to time by use of Eq. (2.4.7) provides

ω(t) = 1 −
(

1 − t

t∗

) 1
l+1
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Figure 2.14 Long-term strength curve

After integration of the creep rate equation (2.4.5) withσ = const we obtain

εcr(t) =
aσn−k

b(l + 1 − n)

[

1 −
(

1 − t

t∗

) l+1−n
l+1

]

The creep strainεcr
∗ at timet∗ (fracture strain) can be calculated as

εcr
∗ (t∗) =

aσn−k

b(l + 1 − n)

If k > n then the fracture strain is a decreasing function of stress.This is usually
observed in the case of moderate stresses.

The phenomenological model (2.4.5) characterizes the effect of damage evolu-
tion and describes the tertiary creep in a uni-axial test. For a number of metals and
alloys material constants are available, see e.g. [18, 69, 77, 132, 141, 142, 143, 144,
163, 169, 184, 185, 216]. Instead of the power law functions of stress or damage it is
possible to use another kind of functions, e.g. the hyperbolic sine functions in both
the creep and damage evolution equations. In addition, by the introduction of suit-
able hardening functions or internal hardening variables,the model can be extended
to consider primary creep.

In applying (2.4.5) to the analysis of structures one shouldbear in mind that the
material constants are estimated from experimental creep curves, usually available
for a narrow range of stresses. The linear dependencies betweenlog ε̇cr

min andlog σ
or betweenlog t∗ and log σ do not hold for wide stress ranges. For example, it is
known from materials science that for higher stresses the damage mode may change
from inter-granular to transgranular, e.g. [33]. Alternatively, tertiary creep can be
described by the introduction of several internal variables which are responsible
for different interacting damage mechanisms. Examples forsuch models will be
discussed later.
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The model (2.4.5) is a system of two ordinary differential equations, which must
be integrated over time in order to obtain the current creep strain and damage. For
the analysis of statically indeterminate structures the integration must be performed
numerically, even in the case of a uni-axial stress state. Insome cases the effect of
tertiary creep rate does not lead to significant stress redistribution and one can ne-
glect the damage variable in the constitutive equation (2.4.1), e.g. [276]. The dam-
age evolution equation can be integrated separately providing the time to fracture
estimation for the given constant stress in the steady-state creep range.

To discuss multi-axial versions of (2.4.1) and (2.4.2) let us neglect primary creep
effects and assume the von Mises type secondary creep material model introduced
in Sect. 2.2.1

ε̇εεcr =
3

2
aσn

vM
sss

σvM
(2.4.8)

Rabotnov [264] assumed that the the creep potential for the damaged material has
the same form as for the secondary creep. His proposition wasthe introduction of
an effective stress tensorσ̃σσ = fff (σσσ, ω). For the case of distinct principal values of
the stress tensorσI > σI I > σI I I andσI > 0 the following expression is suggested
[264]

σ̃σσ =
σI

1 − ω
nnnI ⊗ nnnI + σI InnnI I ⊗ nnnI I + σI I InnnI I I ⊗ nnnI I I

If we apply the strain equivalence principle [185] than the constitutive equation
(2.4.8) can be modified by replacing the stress tensorσσσ with the effective one. As-
suming the effective stress tensor in the formσ̃σσ = σσσ/(1 − ω), the constitutive
equation (2.4.8) can be generalized as follows [182]

ε̇εεcr =
3

2
a

(

σvM

1 − ω

)n sss

σvM
(2.4.9)

The next step is the formulation of the damage evolution equation. By analogy with
the uni-axial case, the damage rate should have a form

ω̇ = ω̇(σσσ, ω)

The dependence on the stress tensor can be expressed by meansof the “damage
equivalent stress”σω

eq(σσσ) which allows to compare tertiary creep and long term
strength under different stress states. With the damage equivalent stress, the uni-
axial equation (2.4.2) can be generalized as follows

ω̇ =
b(σω

eq)
k

(1 − ω)l
(2.4.10)

The material constantsa, b, n, k andl can be identified from uni-axial creep curves.
In order to find a suitable expression for the damage equivalent stress, the data from
multi-axial creep tests up to rupture are required. In general, σω

eq can be formulated
in terms of three invariants of the stress tensor, for example the basic invariants (see
Sect. 2.2.1)
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σω
eq = σω

eq[I1(σσσ), I2(σσσ), I3(σσσ)]

Similarly to the uni-axial case, see Eq. (2.4.7), the damageevolution equation
(2.4.10) can be integrated assuming that the stress tensor is a constant function of
time. As a result, the relationship between the time to creepfracture and the equiv-
alent stress can be obtained

t∗ =
1

(l + 1)b
(σω

eq)
−k (2.4.11)

Sdobyrev [288] carried out long-term tests on tubular specimens made from alloys
EI-237B (Ni-based alloy) and EI-405 (Fe-based alloy) undertension, torsion and
combined tension-torsion. The results of the tests are summarized for different tem-
peratures with the help of equivalent stress vs. fracture time plots. The following
dependence was established

1

2
(σI + σvM) = f (log t∗) (2.4.12)

He found that the linear functionf provides a satisfactory description of the ex-
perimental results. The equivalent stress responsible to the long term strength at
elevated temperatures is thenσ∗

eq = 1
2 (σI + σvM). Based on different mechanisms

which control creep failure, the influence of three stress state parameters (the mean
stressσm = I1/3, the first positive principal stress or the maximum tensile stress
σmaxt = (σI + |σI |)/2 and the von Mises stress) is discussed by Trunin in [314].
The Sdobyrev criterion was extended as follows

σ∗
eq =

1

2
(σvM + σmaxt) a1−2η , η =

3σm

σvM + σmaxt
, (2.4.13)

wherea is a material constant. For special loading cases this equivalent stress yields

– uni-axial tension

σ∗
eq = σ, η =

1

2

– uni-axial compression

σ∗
eq =

σa3

2
, η = −1

– pure torsion

σ∗
eq =

√
3 + 1

2
τa, η = 0

The constanta can be calculated from the ultimate stress values leading tothe same
fracture time for a given temperature. For example, if the ultimate tension and shear
stresses areσu andτu, respectively, then

a =
2√

3 + 1

σu

τu
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Hayhurst [132] proposed the following relationship

t∗ = A(ασmaxt + βI1 + γσvM)−χ, (2.4.14)

whereA andχ are material constants,I1 = 3σm andα + β + γ = 1. Comparing
this equation with Eq. (2.4.11) one can obtain

A =
1

(l + 1)b
, χ = k, σω

eq = ασmaxt + βI1 + γσvM (2.4.15)

Hayhurst introduced the normalized stress tensorσ̄σσ = σσσ/σ0 and the normalized
time to fracturet̄∗ = t∗/t∗0, wheret∗0 is the time to fracture in a uni-axial test
conducted at the stressσ0. From Eqs (2.4.7) and (2.4.11) it follows

t̄∗ =

(

σω
eq

σ0

)−k

= (σ̄ω
eq)

−k

By setting the normalized rupture time equal to unity, the equationσ̄ω
eq = 1 follows,

which is connecting the stress states leading to the equal rupture time. In [132]
the data of biaxial tests (biaxial tension test, combined tension and torsion of tubu-
lar specimens) for different materials are summarized. It was found convenient to
present the results in terms of the isochronous rupture surface, which is the plot of
the equation̄σω

eq = 1 for the specified values ofα and β in the normalized stress
space. For plane stress states the isochronous rupture locican be presented in the
normalized principal stress axes. Examples for different materials are presented in
[132]. The coefficientsα andβ are specific for each material and, in addition, they
may depend on the temperature. Figure 2.15 shows the isochronous rupture loci for
three special cases:σ̄ω

eq = σ̄maxt, σ̄ω
eq = σ̄vM andσ̄ω

eq = 3σ̄m. The first two represent
the extremes of the material behavior [182].

A more general expression for the damage equivalent stress can be formulated
by the use of three invariants of the stress tensor. With the first invariantI1, the von
Mises equivalent stressσvM and

sin 3ξ = −27

2

(s · ss · ss · s) ······ sss

σ3
vM

, −π

6
≤ ξ ≤ π

6
,

as a cubic invariant, the following equivalent stress has been proposed in [27]

σω
eq = λ1σvM sin ξ + λ2σvM cos ξ + λ3σvM + λ4 I1 + λ5 I1 sin ξ + λ6 I1 cos ξ

(2.4.16)
The identification of coefficientsλi, i = 1, . . . , 6 requires six independent tests.
Equation (2.4.16) contains a number of known failure criteria as special cases, see
[27]. For example, settingλ1 = λ2 = λ4 = λ5 = λ6 = 0 the equation provides
the von Mises equivalent stress. Taking into account

σI =
1

3

[

2σvM sin

(

ξ +
2π

3

)

+ I1

]

= −1

3
σvM sin ξ +

√
3

3
σvM cos ξ +

1

3
I1
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Figure 2.15 Plane stress isochronous rupture loci, for details see [132]

and with

λ1 = −1

6
, λ2 =

√
3

6
, λ3 =

1

2
, λ4 =

1

6
, λ5 = λ6 = 0

one can obtainσω
eq = 1

2 (σI + σvM). With

λ1 = −1

3
α, λ2 =

√
3

3
α, λ3 = β, λ4 = 1 − 2

3
α − β, λ5 = λ6 = 0

Eq. (2.4.16) yieldsσω
eq = ασI + βσvM + (1 − α − β)I1. Other examples are dis-

cussed in [3].
In order to identify the material constants, e.g.,a in (2.4.13) orα and β in

(2.4.14), the values of the ultimate stresses leading to thesame failure time for
different stress states are necessary. Therefore series ofindependent creep tests up
to rupture are required. For each kind of the test the long term strength curve (stress
vs. time to fracture curve), see Fig. 2.14, must be obtained.For example, a series
of torsion tests (at least two) under different stress values should be performed.
Usually, experimental data from creep tests under complex stress states are limited
and the scatter of the experimental results is unavoidable.Therefore, the constitu-
tive and the evolution equation (2.4.9) and (2.4.10) with the two-parametric dam-
age equivalent stress (2.4.15) are widely used in modeling tertiary creep. Examples
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of material constants as well as structural mechanics applications can be found in
[18, 69, 77, 132, 142, 143, 144, 163, 169] among others.

2.4.1.2 Micromechanically-Consistent Models. The creep constitutive
equation (2.4.9) includes the effect of damage by means of the equivalent stress
concept. An alternative approach to formulate the creep constitutive equation can
be based on micromechanics. Rodin and Parks [277] considered an infinite block
from incompressible isotropic material containing a givendistribution of cracks and
subjected to a far field homogeneous stress. As a measure of damage they used
ρ = a3N/V, whereN is the number of cracks (voids) in a volumeV anda is the
averaged radius of a crack. Assuming power law creep, they found that the creep
potential for such a material has the following form

W(σσσ, ρ, n) =
ε̇0σ0

n + 1
f
(

ζ(σσσ), ρ, n
)

(

σvM

σ0

)n+1

, (2.4.17)

where ε̇0 is the reference creep rate,σ0 is the reference stress andn is a material
constant.ζ(σσσ) is a function representing the influence of the kind of stressstate. In
[277] the following particular expression is proposed

ζ(σσσ) =
σI

σvM
,

whereσI is the maximum principal stress. The creep potential (2.4.17) and the flow
rule (2.1.6) give

ε̇εεcr =
∂W

∂σσσ
=

∂W

∂σvM

∂σvM

∂σσσ
+

∂W

∂ζ

∂ζ

∂σσσ

= ε̇0

(

σvM

σ0

)n [3

2

(

f − ζ f,ζ

n + 1

)

sss

σvM
+

f,ζ

n + 1
nnnI ⊗ nnnI

]

,

(2.4.18)

wherennnI is the first principal direction of the stress tensor. The function f must
satisfy the following convexity condition [277]

f f,ζζ −
n

n + 1
f 2
,ζ > 0,

The form of the functionf is established for the assumed particular distribution of
cracks and by use of a self-consistent approach. In [278] thefollowing expression is
proposed

f (ζ, ρ, n) =
[

1 + α(ρ, n)ζ2
] n+1

2
,

α(ρ, n) =
2ρ

n + 1
+

(2n + 3)ρ2

n(n + 1)2
+

(n + 3)ρ3

9n(n + 1)3
+

(n + 3)ρ4

108n(n + 1)4

Models of the type (2.4.18) are popular in materials sciencerelated literature,
e.g. [121, 211]. They are based on micromechanical considerations and therefore
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seem to be more preferable for creep-damage analysis. However, only idealized
damage states, e.g. dilute non-interacting cracks or voidswith a given density
and specific distribution can be considered. Furthermore, at present there is no
micromechanically-consistent way to establish the form ofthe evolution equation
for the assumed damage variable. Different empirical equations are proposed in the
literature. For example, Mohrmann and Sester [211] assume that the cavity nucle-
ation is strain controlled and recommend the following equation

ρ

ρ f
=

(

εvM

ε f

)γ

,

whereρ f , ε f andγ are material constants which should be identified from “macro-
scopic” creep responses.

Bassani and Hawk [36] proposed to use a phenomenological damage parameter
ω (see Sect. 2.4.1.1) instead ofρ. The functionf is then postulated as follows

f (ζ, ω, n) =
1

(1 − ω)k

(

1 − α0ω + α0ωζ2
) n+1

2
(2.4.19)

Here
ζ = (1 − α1)

σI

σvM
+ α1

σH

σvM

andk, n, α0 andα1 are material constants. From Eqs (2.4.18) and (2.4.19) follows

ε̇εεcr = ε̇0

(

σvM

σ0

)n 1

(1 − ω)k
(1 − α0ω + α0ωζ2)

n−1
2 ×

×
{

3

2
(1 − α0ω)

sss

σvM
+ α0ωζ[(1 − α1)nnnI ⊗ nnnI + α1III]

} (2.4.20)

With α0 = 1 andk = n (2.4.20) yields the Kachanov-Rabotnov type constitutive
equation (2.4.9). By settingα0 = 1, k = (n + 1)/2 and ω ≪ 1 Eq. (2.4.20)
approximates the Rodin and Parks micro-mechanical based model [277]. For the
casek = n, α0 = 1 andα1 = 1 the constitutive equation for the creep rate can be
presented as follows

ε̇εεcr = ε̇0

[

σvM

σ0(1 − ω)

]n

(1 − ω + ωζ2)
n−1

2

[

3

2
(1 − ω)

sss

σvM
+ ωζIII

]

From Eq. (2.4.20) one can calculate the volumetric creep rate

ε̇V = tr ε̇εεcr = ε̇0

(

σvM

σ0

)n 1

(1 − ω)k
(1 − α0ω + α0ωζ2)

n−1
2 [α0ωζ(1 + 2α1)]

We observe that the damage growth induces dilatation. Creepconstitutive equations
(2.4.18) or (2.4.20) include the first principal dyad of the stress tensor. It should be
noted that the dyadnnnI ⊗ nnnI can be found only ifσI 6= 0, σI 6= σI I andσI 6= σI I I .
In this case, e.g. [199]
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nnnI ⊗ nnnI =
1

(σI − σI I)(σI − σI I I)

[

σσσ2 − (tr σσσ − σI)σσσ +
detσσσ

σI
III

]

(2.4.21)

Inserting (2.4.21) into (2.4.18) or into (2.4.20) we observe that not only the volumet-
ric strain but also second order effects (see Sect. 2.2.1 fordiscussion) are “induced”
by damage.

2.4.1.3 Mechanism-Based Models. The constitutive and evolution equations
(2.4.9) and (2.4.10) are formulated in terms of power law functions of stress. It
is known from materials science that the power law creep model guarantees the
correct description only for a specific stress range (see Sect 2.2.3). In addition, the
power law stress and damage functions used in Eqs. (2.4.9) and (2.4.10) may lead to
numerical problems in finite element simulations of creep instructures with stress
concentrations or in attempts to predict the creep crack growth [192, 281].

The uni-axial creep tests are usually performed under increased stress and tem-
perature levels in order to accelerate the creep process. For the long term analysis
of structures the material model should be able to predict creep rates for wide stress
ranges including moderate and small stresses. Within the materials science many
different damage mechanisms which may operate depending onthe stress level and
the temperature are discussed, e.g., [99]. Each of the damage mechanisms can be
considered by a state variable with an appropriate kinetic equation.

Another way for the formulation of a creep-damage constitutive model is the
so-called mechanism-based approach. The internal state variables are introduced
according to those creep and damage mechanisms which dominate for a specific
material and specific loading conditions. Furthermore, different functions of stress
and temperature proposed in materials science can be utilized. The form and the
validity frame of such a function depend on many factors including the stress and
temperature levels, type of alloying, grain size, etc. The materials science formula-
tions do not provide the values of material constants (only the bounds are given).
They must be identified from the data of standard tests, e.g. uni-axial creep test.
Examples of mechanism-based models can be found in [133, 134, 171, 243, 251].
Here we discuss the model proposed by Perrin and Hayhurst in [251] for a 0.5Cr-
0.5Mo-0.25V ferritic steel in the temperature range 600 – 675◦C.

The starting point is the assumption that the rate of the local grain boundary
deformation is approximately a constant fraction of the overall deformation rate.
From this follows that the constitutive equations for the overall creep rate can be
formulated in terms of empirical relationships between thelocal grain boundary
deformation rate and the stress, the temperature, the cavitation rate, etc.

For ferritic steels the nucleation of cavities has been observed at carbide particles
on grain boundaries due to the local accumulation of dislocations. The nucleation
kinetics can be therefore related to the local deformation.Furthermore, the cavity
nucleation depends on the stress state characterized byσI/σvM. Cane [83] observed
that the area fraction of intergranular cavities in the plane normal to the applied
stress increases uniformly with the accumulated creep strain. He proposed that the
nucleation and growth can be combined into an overall measure of cavitation. The
cavitated area fractionA f can be related to the von Mises equivalent creep strain,



76 2 Constitutive Models of Creep

the von Mises equivalent stress and the maximum principal stress by the equation

A f = DεvM

(

σI

σvM

)µ

, (2.4.22)

whereD andµ are constants depending on the material microstructure. Perrin and
Hayhurst define the damage state variableω as the cavitated area fraction. The fail-
ure condition in a uni-axial creep test is the complete cavitation of all grain bound-
aries normal to the applied stress. The cavitated area fraction of such cavities at
failure is approximately1/3. Therefore, the critical state at which the material fails,
can be characterized byω∗ = 1/3.

The important mechanism of creep damage for the ferritic steel under consid-
eration is the temperature dependent coarsening of carbideprecipitates. First, the
carbide precipitates restrict the deformation of the graininterior and second, they
provide sites for nucleation of cavities. Following Dyson [99], the particle coars-
ening can be characterized by the state variableφ = 1 − li/l related to the initial
(li) and current(l) spacing of precipitates. The kinetic equation is derived from the
coarsening theory [99, 101]

φ̇ =

(

Kc

3

)

(1 − φ)4 (2.4.23)

with Kc as the material dependent constant for a given temperature.The rate of the
coarsening variable is independent from the applied stressand can be integrated
with respect to time. The primary creep is characterized by the work hardening due
to the formation of the dislocation substructure. For this purpose a scalar hardening
state variableH is introduced. This variable varies from zero to a saturation value
H∗, at which no further hardening takes place. The proposed evolution equation is

Ḣ =
hc ε̇cr

vM

σvM

(

1 − H

H∗

)

(2.4.24)

with hc as the material constant.
The creep rate is controlled by the climb plus glide deformation mechanism. For

the stress dependence of the creep rate, the hyperbolic sinestress function is used.
The materials science arguments for the use of hyperbolic sine function instead of
power law function are discussed, for example, by Dyson and McLean [102]. With
the assumed mechanisms of hardening, cavitation and ageingand the corresponding
state variables the following equation for the von Mises creep rate is proposed

ε̇cr
vM = A sinh

BσvM(1 − H)

(1 − φ)(1 − ω)
(2.4.25)

The previous equations are formulated with respect to a fixedtemperature. The in-
fluence of the temperature on the processes of creep deformation, creep cavitation
and coarsening can be expressed by Arrhenius functions withappropriate activa-
tion energies. Further details of the physical motivation are discussed in [251]. The
following set of constitutive and evolution equations has been proposed
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ε̇εεcr =
3

2

sss

σvM
A sinh

BσvM(1 − H)

(1 − φ)(1 − ω)
,

Ḣ =
hc ε̇cr

vM

σvM

(

1 − H

H∗

)

,

φ̇ =

(

Kc

3

)

(1 − φ)4,

ω̇ = DNε̇cr
vM

(

σI

σvM

)µ

,

A = A0B exp

(

−QA

RT

)

, B = B0 exp

(

−QB

RT

)

,

Kc =
Kc0

B3
exp

(

−QKc

RT

)

, D = D0 exp

(

−QD

RT

)

,

(2.4.26)

whereN = 1 for σI > 0 andN = 0 for σI ≤ 0. A0, B0, D0, Kc0 , hc, H∗, QA, QB,
QD andQKc are material constants which must be identified from uni-axial creep
tests. The material constantµ, the so-called stress state index, can be determined
from multi-axial creep rupture data. These constants are identified in [251] based on
the experimental data of uni-axial creep over the stress range of28 − 110 MPa and
over the temperature range of615 − 690◦ C. In [252] Eqs (2.4.26) are applied to
model creep in different zones of a weldment at640◦ C including the weld metal,
the heat affected zone and the parent material.

It should be noted that Eqs (2.4.26) are specific for the considered material and
can only be applied with respect to the dominant mechanisms of the creep deforma-
tion and damage evolution. Further examples of mechanism based material models
are presented in [244] for a nickel-based super-alloy and in[171] for an aluminium
alloy.

2.4.1.4 Models Based on Dissipation. Sosnin [296, 297] proposed to charac-
terize the material damage by the specific dissipation work.The following damage
variable has been introduced

q =

t
∫

0

σε̇crdτ (2.4.27)

For the variableq the evolution equation was postulated

q̇ = fσ(σ) fT(T) fq(q)

For the multi-axial stress and strain states this variable is defined as follows

q =

t
∫

0

σσσ ······ ε̇εεcrdτ

In [297] Sosnin presented experimental data for various titanium and aluminium
alloys in a form ofq vs. time curves. He found that a critical valueq∗ exists at
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which the material fails under creep conditions. The valueq∗ does not depend on
the kind of applied stress and can be considered as a materialconstant.

For isotropic materials the creep rate equation can be formulated as follows (see
Sect. 2.2.1)

ε̇εεcr =
3

2

Ṗ

σvM
sss, P = σσσ ······ ε̇εεcr = σvM ε̇cr

vM (2.4.28)

Sosnin assumed the dissipation powerṖ to be a function of the von Mises equivalent
stress, the temperature and the internal state variableq as follows

q̇ ≡ Ṗ = fσ(σvM) fT(T) fq(q)

In many cases the following empirical equation provides a satisfactory agreement
with experimental results

q̇ =
bσn

vM

qk(qk+1
∗ − qk+1)m

, (2.4.29)

whereb, n, k, m andq∗ are material constants. In [297] experimental data obtained
from uni-axial tests and tests on tubular specimens under combined tension and
torsion are presented. Particularly the results of combined tension and torsion tests
show that theq versust curves do not depend on the kind of the stress state. The
material constants are identified for titanium alloys OT-4,BT-5 and BT-9, for the
aluminium alloy D16T and for the steel 45. In [28] the Sosnin’s dissipation damage
measure is applied to the description of creep-damage of thetitanium alloy OT-4
and the aluminium alloy D16T considering stress state effects. In [341]Życzkowski
calculated the dissipation powerP starting from the Kachanov-Rabotnov constitu-
tive equation (2.4.9). He found that for a class of materialsit is possible to express
the damage evolution equation (2.4.10) in terms of the dissipation power. He con-
cluded that this approach allows to reduce the number of material constants to be
determined from creep tests.

2.4.2 Damage-Induced Anisotropy

The dominant damage mechanism for many materials is the nucleation and growth
of cavities and formation of micro-cracks. Cavities nucleate on grain boundaries
having different orientations. At the last stage before creep rupture the coalescence
of cavities and the formation of oriented micro-cracks is observed. The direction of
the orientation depends on the material microstructure andon the kind of the applied
stress. For example, micrographs of copper specimens tested under torsion show that
the micro-cracks dominantly occur on the grain boundaries whose normals coincide
with the direction of the maximum positive principal stress[134, 136, 212]. The
strongly oriented micro-cracks may induce anisotropic creep responses particularly
at the last stage of the creep process. Creep responses of theaustenitic steel X8
CrNiMoNb 1616 and the ferritic steel 13 CrMo 4 4 are experimentally studied in
[63, 105] with respect to different loading orientations. Figure 2.16 schematically



2.4 Tertiary Creep and Creep Damage 79

tt

εcrεcr

1

4
3

2

1 − initial curve
2 − afterεcr = 0.25εcr

∗
3 − afterεcr = 0.5εcr

∗
4 − afterεcr = 0.75εcr

∗

θ1

θ2

θ3

θ4

θ

a b

Figure 2.16 Uni-axial creep tests with different orientations of the loading direction.a Creep
curve for a flat specimen and creep curves for small specimensafter different prestraining,
b creep curves for different loading directions after pre-straining of0.75εcr

∗ (after [63, 105])

presents the results of testing. Uni-axial creep tests werecarried out on flat speci-
mens at different stress and temperature levels. In order toestablish the influence of
the creep history (pre-loading and pre-damage), series of flat specimens were tested
up to different values of the creep strain. The values of the creep pre-straining were
εcr = 0.25εcr

∗ ; 0.5εcr
∗ ; 0.75εcr

∗ , whereεcr
∗ is the creep strain at fracture. After unload-

ing, small specimens were manufactured from the pre-strained flat specimens with
different orientation to the loading axis, Fig. 2.16b. The uni-axial tests performed
on the small specimens show that the creep responses depend on the angle of the
orientationθ. In [105] it is demonstrated that for small specimens pre-strained up
to 0.25εcr

∗ the creep response is not sensitive to the angleθ. The significant depen-
dence of the creep curves and the fracture times on the angleθ has been observed
for specimens pre-strained up to0.75εcr

∗ .
In [218] creep tests were carried out on thin-walled copper tubes under com-

bined tension and torsion. The loading history and the creepresponses are schemat-
ically presented in Fig. 2.17. During the first cycle the specimens were preloaded by
constant normal and shear stresses within the time interval[0, t1]. In the second cy-
cle from t1 up to creep rupture the specimens were loaded under the same constant
normal stress but the reversed constant shear stress. The stress state after the reversal
is characterized by the change of the principal directions.The angle between the first
principal direction in the reference state and after the reversal can be controlled by
the values of the normal and the shear stresses. Creep responses for different angles
are discussed in [218]. It is demonstrated that the creep-damage model with a scalar
damage parameter, see Sect. 2.4.1, is not able to predict thecreep behavior after the
shear stress reversal. Particularly, it significantly underestimates the fracture time in
all loading cases. Similar results are discussed in [219] based on tests on Nimonic
80A.
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Figure 2.17 Creep tests at combined tension and torsion.a Loading history,b creep re-
sponses (after [218])

The introduced examples of experimental observations indicate that the creep
rate and the lifetime of a specimen additionally depend on the orientation of micro-
defects with respect to the principal axes of the stress tensor. One way to consider
such a dependence is the use of a tensor-valued damage parameter. A second rank
damage tensor was firstly introduced by Vakulenko and M. Kachanov [316] for
the description of elastic-brittle damage. The first attempt to use a tensor-valued
damage parameter in creep mechanics is due to Murakami and Ohno [215, 217].
They considered a characteristic volumeV in the material havingN wedge cracks
and specified the area of the grain boundary occupied by thekth crack bydAk

g. They
assumed that the state of damage can be characterized by the following second rank
symmetric tensor

ΩΩΩ =
3

Ag(V)

N

∑
k=1

∫

V

[mmmk ⊗mmmk + wk(III −mmmk ⊗mmmk)]dAk
g, (2.4.30)

wheremmmk is the unit normal vector to thekth crack andAg(V) is the total area of
all grain boundaries inV. wk characterizes the effect of thekth crack on the area
reduction in the planes whose normals are perpendicular tommmk. Specifying the three
principal values ofΩΩΩ by Ωj, j = 1, 2, 3, and the corresponding principal directions
by the unit vectorsnnnj the damage tensor can be formulated in the spectral form

ΩΩΩ =
3

∑
j=1

Ωjnnnj ⊗ nnnj (2.4.31)

The principal values of the damage tensorΩj are related to the cavity area fractions
in three orthogonal planes with the unit normals±nnnj . The casesΩj = 0 and
Ωj = 1 correspond to the undamaged state and the creep-rupture in the jth plane,
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respectively. By analogy with the uni-axial bar (see Fig. 2.12) Murakami and Ohno
introduced a fictitious undamaged configuration in a solid bymeans of effective
infinitesimal area elements. From three orthogonal planes having the unit normals
−nnnj an infinitesimal tetrahedron is constructed with area elements−ñnnidÃi andñnndÃ
so that

ñnndÃ =
3

∑
j=1

nnnjdÃj =
3

∑
j=1

(1 − Ωj)nnnjdAj (2.4.32)

With Ωjnnnj = nnnj ···ΩΩΩ = ΩΩΩ ··· nnnj

ñnndÃ = (III −ΩΩΩ) ··· nnndA (2.4.33)

The stress vector acting in the plane with the unit normalnnn can be specified byσσσ(nnn).
The resultant force vector acting in the planedA is

dAσσσ(nnn) = dAnnn ··· σσσ = dÃñnn ··· (III −ΩΩΩ)−1 ··· σσσ = dÃñnn ··· σ̃σσ, σ̃σσ ≡ (III −ΩΩΩ)−1 ··· σσσ,
(2.4.34)

whereσ̃σσ is the effective stress tensor. Introducing the so-called damage effect tensor
ΦΦΦ ≡ (III −ΩΩΩ)−1 one can write

σ̃σσ = ΦΦΦ ··· σσσ (2.4.35)

According to the strain equivalence principle [185], the constitutive equation for the
virgin material, for example the constitutive equation forthe secondary creep, can
be generalized to the damaged material replacing the Cauchystress tensorσσσ by the
net stress tensor̃σσσ. The net stress tensor (2.4.35) is non-symmetric. Introducing the
symmetric part

σ̃σσs =
1

2
(σσσ ···ΦΦΦ + ΦΦΦ ··· σσσ) (2.4.36)

the secondary creep equation (2.4.8) is generalized as follows [219]

ε̇εεcr =
3

2
aσ̃n−1

vM s̃sss, s̃sss = σ̃σσs − 1

3
trσ̃σσsIII, σ̃vM =

√

3

2
s̃sss ············ s̃sss (2.4.37)

The rate of the damage tensor is postulated as a function of the stress tensor and the
current damage state. The following evolution equation is proposed in [218] for the
description of creep damage of copper

Ω̇ΩΩ = b[ασ̃s
I + (1 − α)σ̃s

vM]k(nnnσ̃σσ
I ···ΦΦΦ ··· nnnσ̃σσ

I )
lnnnσ̃σσ

I ⊗ nnnσ̃σσ
I , (2.4.38)

whereb, α, k and l are material constants and the unit vectornnnσ̃σσ
I denotes the di-

rection corresponding to the first positive principal stress σ̃I . The constitutive and
evolution equations (2.4.37) and (2.4.38) have been applied in [219] for the descrip-
tion of creep-damage behavior of Nimonic 80A. The second rank damage tensor
(2.4.31) and the net stress (2.4.36) have been used in [218] with McVetty-type creep
equations for the prediction of creep-damage of copper. Theresults show that the
model with the damage tensor provides better agreement withexperimental data if
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compared to the model with a scalar damage parameter, see Fig. 2.17. In [217] the
following damage evolution equation is utilized

Ω̇ΩΩ = b[ασ̃s
I + βσ̃m + (1 − α − β)σ̃s

vM]k(tr ΦΦΦ2)l/2
[

ηIII + (1 − η)nnnσ̃σσ
I ⊗ nnnσ̃σσ

I

]

,

(2.4.39)
whereβ andη are material constants. This equation takes into account the influence
of the mean stress on the damage rate. Furthermore, the isotropic part of the damage
tensor associated with the growth of voids is included.

To discuss the damage tensor (2.4.31) let us consider a uni-axial homogeneous
stress stateσσσ = σ0mmm ⊗mmm with σ0 > 0 andmmm = const. Let us specifyΩΩΩ = 000 as the
initial condition. The evolution equation (2.4.38) takes the form

Ω̇ΩΩ(t) = ω̇(t)mmm ⊗mmm, ω̇ =
bσk

0

(1 − ω)k+l
, ω(0) = 0 (2.4.40)

The equation for the scalarω can be integrated as shown in Sect. 2.4.1. As a result
one can find the relation between the time to fracture and the stressσ0. Based on
this relation and experimental data one can estimate the values of material constants
b, k and l (Sect. 2.4.1). According to the introduced damage measure (2.4.31) the
damage stateΩΩΩ = ωmmm⊗mmm corresponds to the case of uniformly distributed penny-
shaped cracks (circular planes) with the unit normalsmmm.

Now let us assume that the damage stateΩΩΩ = ω0mmm ⊗ mmm, 0 < ω0 < 1 is
induced as a result of the constant stressσσσ = σ0mmm ⊗ mmm exerted over a period of
time and in the next loading cycleσσσ = σ0ppp ⊗ ppp, ppp ···mmm = 0. In this case the solution
of (2.4.38) can be written down as follows

ΩΩΩ(t) = ω0mmm ⊗mmm + ω1(t)ppp ⊗ ppp, ω̇1 =
bσk

0

(1 − ω1)k+l
, ω1(0) = 0 (2.4.41)

The model predicts that in the second cycle the material behaves like a virgin un-
damaged material. The corresponding time to fracture does not depend on the initial
damageω0. The rate of nucleation and growth of new voids (cracks) on the planes
orthogonal toppp will not be affected by cracks formed in the first loading cycle. Fur-
thermore, if a compressive stress i.e.σσσ = −σ0ppp ⊗ ppp is applied in the second cycle
the model predicts no damage accumulation.

Let us note that the evolution equations (2.4.38) and (2.4.39) can only be applied
if σ̃I 6= 0, σ̃I 6= σ̃I I andσ̃I 6= σ̃I I I . In this case the dyadnnnσ̃σσ

I ⊗nnnσ̃σσ
I can be found from

the identity (2.4.21). For the stress statesσσσ = a0III or σσσ = appp ⊗ ppp + b(III − ppp ⊗ ppp),
a < b, there is an infinite number of first principal directions. Such stress states are
typical for several structural components. For example, the stress state of the type
σσσ = appp ⊗ ppp + b(III − ppp ⊗ ppp) arises in the midpoint of a transversely loaded square
plate with all for edges to be fixed (e.g. supported or clampededges), [13]. In the
loaded (top) surface of such a plateb < a < 0 while in the bottom surfaceb > a,
a < 0, b > 0. Stress states of the same type arise in different rotationally symmetric
problems of structural mechanics. For analysis of such problems a modified form of
the evolution equation (2.4.39) is required [119].
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Various forms of creep-damage constitutive equations withsecond rank damage
tensors have been utilized. In [12] the effective stress tensor

σ̃σσ = ΦΦΦ1/2 ··· σσσ ···ΦΦΦ1/2 (2.4.42)

proposed in [91] is applied to formulate the creep-damage constitutive equation.
Mechanisms of damage activation and deactivation are takeninto account. The
model predictions are compared with experimental data of creep in copper. In
[259, 260, 261, 262] a second rank damage tensor is applied for the modeling of
creep of nickel-based single crystal super-alloys SRR 99 and CMSX-6 at760◦ C.
The proposed constitutive equations take into account boththe initial anisotropy and
the damage induced anisotropy.

The symmetry group of a symmetric second rank tensor includes at least nine el-
ements (see Sect. 2.3.2). With the second rank damage tensorand the effective stress
tensors (2.4.36) or (2.4.42) only restrictive forms of orthotropic tertiary creep can be
considered (a similar situation is discussed in Sect. 2.3.2). Therefore in many works
it is suggested to introduce higher order damage tensors. For different definitions
of damage tensors one may consult [8, 10, 55, 172, 183, 291]. Acritical review
is given in [284]. At present, the available experimental data on creep responses
do not allow to verify whether the orthotropic symmetry is anappropriate symme-
try assumption for the modeling of anisotropic creep-damage processes. From the
micro-structural point of view one may imagine rather complex three-dimensional
patterns of voids and cracks which nucleate and propagate asthe result of multi-axial
non-proportional loadings. An attempt to predict these patterns would result in a
complex mathematical model with a large (or even infinite) number of internal vari-
ables including tensors of different rank. A model to characterize different patterns
of cracks may be based on the orientation distribution function, orientation averag-
ing and the so-called orientation tensors. This approach iswidely used in different
branches of physics and materials science for the statistical modeling of oriented
micro-structures. Examples include fiber suspensions [181], mixtures [112], poly-
mers and polymer composites [21, 307]. The application of orientational averaging
to characterize damage states under creep conditions is discussed in [212, 240, 300].

Finally let us note, that the material behavior at elevated temperature and non-
proportional loading is a complex interaction of differentdeformation and damage
mechanisms such as hardening, softening, creep-damage, fatigue-damage, etc. Sev-
eral unified models utilize constitutive equations of creepwith kinematic and/or
isotropic hardening and include damage effects by means of the effective stress
concept and the strain equivalence principle. In [158] the Malinin-Khadjinsky kine-
matic hardening rule, see Sect. 2.3.2 and isotropic Kachanov-Rabotnov type damage
variable are discussed. The damage rate is additionally governed by the magnitude
of the hardening variable, so that the coupling effect of damage and strain harden-
ing/softening can be taken into account. It is shown that thekinematic hardening
coupled with isotropic damage predicts well the effect of longer life-time after the
stress reversal. In [98] the Chaboche-Rousselier visco-plasticity model is modified
to predict the coupled creep-plasticity-damage behavior.The scalar damage vari-
able is introduced as a sum of the accumulated time-dependent and cycle-dependent
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components. Various approaches to formulate a unified material model within the
framework of continuum damage mechanics and thermodynamics of dissipative
processes are discussed in [85, 86, 88, 185].

The verification of a unified model with non-linear anisotropic hardening
and damage coupling requires a large number of independent tests under non-
proportional loading. As a rule, accurate experimental data are rarely available.
Furthermore, non-uniform stress and strain fields may be generated in a standard
uni-axial specimen under non-proportional cyclic loadingconditions [189]. They
may be the reason for the large scatter of experimental data and misleading inter-
pretations.


