2 Constitutive Models of Creep

Analysis of creep in engineering structures requires thaddation and the solution

of an initial-boundary value problem including the balaegeations and the consti-
tutive assumptions. Equations describing the kinemafitsree-dimensional solids
as well as balance equations of mechanics of media are peesenmonographs

and textbooks on continuum mechanics, e.g. [29, 35, 44,0,,131, 178, 199]. In

what follows we discuss constitutive equations for the dpson of creep behavior

in three-dimensional solids.

The starting point of the engineering creep theory is thedhiction of the in-
elastic strain, the creep potential, the flow rule, the emjaivt stress and internal
state variables, Sect. 2.1. In Sect. 2.2 we discuss catatitonodels of secondary
creep. We start with the von Mises-Odqvist creep potentidltae flow rule widely
used in the creep mechanics. To account for stress statetseffeeep potentials
that include three invariants of the stress tensor aredntred. Consideration of
material symmetries provide restrictions for the creegpudl. A novel direct ap-
proach to find scalar valued arguments of the creep potdati#the given group of
material symmetries is proposed. For several cases of islaggmmetry appropri-
ate invariants of the stress tensor, equivalent stress tagid gxpressions as well
as constitutive equations for anisotropic creep are deriire Sect. 2.3 we review
experimental foundations and models of transient creepviehunder different
multi-axial loading conditions. Section 2.4 is devotedhe tlescription of tertiary
creep under multi-axial stress states. Various modelsmitte framework of con-
tinuum damage mechanics are discussed.

All equations are presented in the direct tensor notatidiis Mmotation guaran-
tees the invariance with respect to the choice of the coateisystem and has the
advantage of clear and compact representation of com&itassumptions, partic-
ularly in the case of anisotropic creep. The basic rules efdihect tensor calculus
as well as some new results for basic sets of invariants wespact to different
symmetry classes are presented in Appendix A.

2.1 General Remarks

The modeling of creep under multi-axial stress states i&élyestep in the adequate
prediction of the long-term structural behavior. Such a eliod requires the in-
troduction of tensors of stress, strain, strain rate antesponding inelastic parts.
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Usually, they are discussed within the framework of conimumechanics start-
ing from fundamental balance equations. One of the most itapband funda-

mental questions is that of the definition (or even the emtst® of a measure of
the inelastic strain and the decomposition of the totalirstirdo elastic and irre-

versible parts within the material description. From theottetical point of view

this is still a subject of many discussions within the noveér continuum mechan-
ics, e.q. [45, 46, 223, 246].

In engineering mechanics, these concepts are often irteodbased on intu-
itive assumptions, available experimental data and agbics. Therefore, a lot of
formulations of multi-axial creep equations can be founthim literature. In what
follows some of them will be discussed. First let us recalksal assumptions usu-
ally made in the creep mechanics [58, 235].

The assumption of infinitesimal strains allows to negleetdtference between
the true stresses and strains and the engineering stregssgrains. According to
the continuum mechanics there are no differences betweeikdlerian and the
Lagrangian approaches within the material descriptiore@requations in the geo-
metrical non-linear case (finite strains) are discussedheénnhonograph [67], for
example. Finite strain equations based on rheological teate presented in the
monographs [175, 246]. The linearized equations of creepiraaum mechanics
can be used in the majority of engineering applications b&eatructures are usu-
ally designed such that the displacements and strainagasia consequence of the
applied loading do not exceed the prescribed small valuss eXception is the case
of thin-walled shells, where geometrical non-linearitiegst be considered even if
strains are infinitesimal, see Sect. 4.4.

The assumption of the classical non-polar continuum wsttihe class of mate-
rials. The equations of motion within the continuum mecbaimmclude the balance
of momentum and the balance of angular momentum, e.g. [T68ke equations in-
troduce the stress and the moment stress tensors. Polaiatsedee those which are
characterized by constitutive equations with respect th temsors (in general, they
are non-symmetric). In addition, the rotation degrees e¢diom, i.e. the rotation
tensor and the angular velocity, are introduced as indeggrgantities. Models of
polar media found application to granular or porous matefv, 104, 214], fiber
suspensions [22, 109], or other media with changing mianogire. At present, the
moment stress tensor and the anti-symmetric part of thesstemsor are not con-
sidered in the engineering creep theories. The reason i@ighhe higher order
complexity of the models and as a consequence increasatl feffdhe identifica-
tion of material characteristics.

The assumption of isothermal conditions makes it possibtietouple the ther-
mal and the mechanical problem. Furthermore, heat trapstdiems are not con-
sidered. The influence of the constant temperature on trep awde is described
by an Arrhenius function, see Sect. 2.2.3. Coupled therraoh@nical problems of
creep and damage are discussed in [291], where the influéicceep cavitation on
thermal conductivity is considered.
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In this chapter we shall use the following notation. belbe the Cauchy stress
tensor and be the tensor of infinitesimal strains as they are defineddng2, 199],
among others. Let the symmetric second rank teéSobe the tensor of the rate
of infinitesimal inelastic strains induced by the creep pssc For the infinitesimal
strains one can assume the additive split of the total steainto elastic and creep
parts, i.e£ = ¢/ + &7, The constitutive equation relating the stress tensor and
the elastic part of the strain tensor can be formulated dowgrto the generalized
Hooke’s law [29, 55, 126, 199] and will be introduced latere€p deformation is
accompanied by various microstructural changes havirigrdiit influences on the
strain rate. The current state of the material microstrnecits determined by the
entire previous history of the creep process. It can be ctariaed by a set of addi-
tional field variables termed as internal or hidden stateées. In this chapter we
shall discuss internal state variables characterizingtidtes of hardening/recovery
and damage. In order to distinguish between the hardenithda@mage mechanisms
we shall specify the “internal hardening variables” Hyand the “internal damage
variables” byw;. The number of such variables and the corresponding ewaluti
equations (ordinary differential equations with respecthie time variable) is dic-
tated by the knowledge of creep-damage mechanisms for disdeuetal or alloy,
the availability of experimental data on creep and long tstrength as well as the
type of the structural analysis application. In some casesnternal state variables
must be introduced as tensors of different rank in order ¢tugte effects of the
deformation or damage induced anisotropy.

Constitutive equations of multi-axial creep are usuallgdzhon the concept of
the creep potential and the flow rule. The associated flowhagethe origin in the
engineering theory of plasticity. The basic assumptiornisftheory are:

— The existence of a yield condition (creep condition, sed,[&5 example) ex-
pressed by the equatidhc) = 0, whereF is a scalar valued function. In the
general case one can presume thatepends not only on the stress tensor but
also on the internal state variables and the temperatuts D], i.e. the yield
condition has a form

F(a’,Hi,wj,T)zo, i=1,...,n, j=1,...,m (2.1.1)

— The existence of a flow potential as a function of the stressoiep (o).

The flow rule (sometimes called the normality rule) is théolwing assumption for

the inelastic strain rate tensor
éin = f]—, 2.1.2
oo ( )

wheres; is a scalar factor. In the special case that the flow poteatigicides with
the yield function i.e® = F (2.1.2) represents the associated flow rule. With respect

to the variation of the stress tensor one distinguishes between the cases of elastic
state, unloading from an elastic-plastic state, neutediltg and loading, i.e.
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F(o) <0, elastic state

F(o) =0, and JF =dc - 2—5 < 0 unloading

F(o) =0, and ¢F =éo - 3—5 =0 neutral loading

F(o) =0, and JF = éo - 2—5 >0 loading

For work hardening materials > 0 is set in the case of loading/neutral loading,
otherwisej = 0, see e.g. [201]. Further details of the flow theory as wellfsrént
arguments leading to (2.1.2) can be found in textbooks ooryhef plasticity, e.g.
[138, 151, 153, 161, 201, 206, 292].

Within the creep mechanics the flow theory is usually apphgtiout the con-
cept of the yield stress or yield condition. This is motieht®y the fact that creep
is a thermally activated process and the material startsstepoeven under low and
moderate stresses lying below the yield limit. Furthermatehigh temperatures
05T, < T < 0.7T,, the main creep mechanism for metals and alloys is the dif-
fusion of vacancies, e.g. [117]. Under this condition th&stexice of a yield or a
creep limit cannot be verified experimentally. In [185], {82t is stated that “the
concept of a loading surface and the loading-unloadingrioih which was used in
plasticity is no longer necessary”. In monographs [55, 88,, 202, 250] the flow
rule is applied as follows

& = ;72#:, i >0 (2.1.3)

Equation (2.1.3) states the “normality” of the creep rateste to the surfaces
®(0) = const. The scalar factor; is determined according to the hypothesis of
the equivalence of the dissipation power [2, 58]. The detgym power is defined
by P = &7 .- 0. It is assumed thaP = egga@q, wheres"é{7 is an equivalent creep
rate andr,, is an equivalent stress. The equivalent measures of stdsseep rate
are convenient to compare experimental data under diffstegss states (see Sect.
1.1.2). From the above hypothesis follows

. P _ égZUeq
T T
Jdo Jdo
The equivalent creep rate is defined as a function of the alpuit/stress according

to the experimental data for uni-axial creep as well as creephanisms operating
for the given stress range. An example is the power law stoegsion

(2.1.4)
3

€oq(0eq) = a0, (2.1.5)

Another form of the flow rule without the yield condition hasdm proposed by
Odqvist, [234, 236]. The steady state creep theory by Otosée [234], p.21 is
based on the variational equatidW = do -- ¢ leading to the flow rule
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oW
e = — 2.1.6
¢ e (2.1.6)
where the scalar valued functidti(c) plays the role of the creep potentialn or-
der to specify the creep potential, the equivalent strgg#) is introduced. Taking
into account thatV (o) = W (o, (")) the flow rule (2.1.6) yields

&Cl s —

. oW aa@q __Cr ao—eﬂ — oW

= = = 2.1.7
90 00 Tor’ " 3o, @1.7)

The creep potentiahV (o) is defined according to experimental data of creep under
uni-axial stress state for the given stress range. An exaispghe Norton-Bailey-

Odqvist creep potential
o ToMm n+1
= , 2.1.8

n+1 ( 0o > ( )

widely used for the description of steady state creep of imatad alloys. In (2.1.8)
oy andn are material constants auagy, is the von Mises equivalent stress. Below
we discuss various restrictions on the potentials, e.gsyinemetries of the creep
behavior and the inelastic incompressibility.

In order to compare the flow rules (2.1.3) and (2.1.6) let uspmate the dissipa-
tion power. From (2.1.7) it follows

~ OW dogg

P:e’cr..g_ . — -0,
00y 00 “ 9o

We observe that the equivalence of the dissipation powkwslfrom (2.1.7) if the
equivalent stress satisfies the following partial difféi@requation

aoeq
Jo

Furthermore, in this case the flow rules (2.1.3) and (2.28&l to the same creep
constitutive equation. Many proposed equivalent strepsessions satisfy (2.1.9).
The above potential formulations originate from the worksRichard von

Mises, where the existence of variational principles isias=l in analogy to those
known from the theory of elasticity (the principle of the nmmum of the com-
plementary elastic energy, for example). Richard von Miseste [320]: “Die
Formanderung regelt sich derart, dalR die pro Zeiteintmitifar verzehrte Arbeit
unverandert bleibt gegeniiber kleinen Variationen deanBpngen innerhalb der
FlieRgrenze. Da die Elastizitatstheorie einen ahnticAesammenhang zwischen
den Deformationsgrof3en und dem elastischen Potentidl gehnenne ich die Span-
nungsfunktionF auch das “plastische Potential” oder “FlieBpotentialt.’can be
shown that the variational principles of linear elastiGtg special cases of the en-
ergy balance equation (for isothermal or adiabatic pr&g)ssee e.g. [198], p. 148,

o=0, 2.1.9)
q (

1 The dependence on the temperature is dropped for the sakevitfyb
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for example. Many attempts have been made to prove or to atetihe potential
formulations within the framework of irreversible thernyoémics. For quasi-static
irreversible processes various extremum principles (bayprinciple of least irre-
versible force) are stipulated in [337]. Based on thesecjpies and additional ar-
guments like material stability, the potential formulatscand the flow rules (2.1.1)
and (2.1.6) can be verified. In [185], p. 63 a complementasgigation potential
as a function of the stress tensor as well as the number di@uali forces conju-
gate to internal state variables is postulated, whose piepge.g. the convexity, are
sufficient conditions to satisfy the dissipation inequyalih [206] theories of plastic-
ity and visco-plasticity are based on the notion of the geisbn pseudo-potentials.
However, as far as we know, the flow rules (2.1.1) and (2.1ibyepresent the as-
sumptions confirmed by various experimental observatidrsteady state creep in
metals rather than consequences of the fundamental lawsadvantage of varia-
tional statements is that they are convenient for the foatian of initial-boundary
value problems and for the numerical analysis of creep inneeging structures.
The direct variational methods (for example, the Ritz métlioe Galerkin method,
the finite element method) can be applied for the numeridatisa.

Finally, several creep theories without creep potentiady e found in the lit-
erature. In the monograph [246] various constitutive @quatof elastic-plastic and
elastic-visco-plastic behavior in the sense of rheoldgitadels are discussed with-
out introducing the plasticity, creep or dissipation ptigds. For example, the mod-
els of viscous flow of isotropic media known from rheology.4123, 269], can be
formulated as the relations between two coaxial tensors

g = GOI + Glé + Gzé - € (2110)

or
¢ = Hyl + Hio + Hyo - 0, (2.1.11)

whereG; is a function of invariants of while H; depend on invariants @f. The
application of the dissipative inequality provides regions imposed oii;; or H;.
The existence of the potential requires tGabr H; must satisfy certain integrability
conditions [58, 199].
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2.2 Secondary Creep

Secondary or stationary creep is for many applications thstnimportant creep
model. After a relatively short transient period the matecreeps in such a manner
that an approximate equilibrium between hardening an@sioft) processes can be
assumed. This equilibrium exists for a long time and the {@mg behavior of a
structure can be analyzed assuming stationary creep pgexcds this section sev-
eral models of secondary creep are introduced. The secoondatationary creep
assumes constant or slowly varying loading and temperatomeitions. Further-
more, the stress tensor is assumed to satisfy the conditiproportional loading,
i.e.o(t) = ¢(t)op, whereg(t) is a slowly varying function of time andy is a
constant tensor.

2.2.1 Isotropic Creep

In many cases creep behavior can be assumed to be isotnopihalt follows the
classical potential and the potential formulated in terrhthcee invariants of the
stress tensor are introduced.

2.2.1.1 Classical Creep Equations. The starting point is the Odqvist flow rule
(2.1.6). Under the assumption of the isotropic creep, theri@l must satisfy the
following restriction

W(Q-o-Q") =W(o) (2.2.1)

for any symmetry transformatio®, Q - Q7 = I, detQ = +1. From (2.2.1) it
follows that the potential depends only on the three invesiaf the stress tensor
(see Sect. A.3.1). Applying the principal invariants

W) =tro, Ja(0) = 2[(tre): —tro?),
2 (2.2.2)

1 1
(tro)® — Ztrotro? 4+ ~tr o

1
J3(0) = deto = ¢ 5 3

one can write
W(o) =W(1, )2 J3)

Any symmetric second rank tensor can be uniquely decomposedhe spherical
part and the deviatoric part. For the stress tensor thisrmdposition can be written
down as follows
1
0-:0'm1+s, trS:0:>0'm:§t1‘0',

wheres is the stress deviator ag, is the mean stress. With the principal invariants
of the stress deviator

1, 1 1. 5 1
= ——trs’ = ——-§--8, = trs°==(s-8) -8
J2p St > Jap 3t 3( )
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the potential takes the form

W =W(J1, J2p, J3p),

Applying the rule for the derivative of a scalar valued fuoctwith respect to a
second rank tensor (see Sect. A.2.4) and (2.1.6) one caimobta

ow ow oW 1
&= —I— —s5+— <s2 — —tr s21> 2.2.3
di  9dhp  9J3p 3 (2.2.3)
In the classical creep theory it is assumed that the inelagtiormation does not
produce a significant change in volume. The spherical paftetreep rate tensor
is neglected, i.ér & = 0. Setting the trace of (2.2.3) to zero results in

oW
tré" =3—=0 = W= W(]ZD/]SD)
1
From this follows that the creep behavior is not sensitivéhto hydrostatic stress
statec = —pl, wherep > 0 is the hydrostatic pressure. The creep equation (2.2.3)
can be formulated as

gor = W W <52
dp  9Jzp

The last term in the right-hand side of (2.2.4) is non-line@ih respect to the stress
deviators. Equations of this type are called tensorial non-linearagiqus, e.g. [35,
58, 202, 265]. They allow to consider some non-classicatoord order effects of
the material behavior [35, 66]. As an example let us conditepure shear stress
states = T(m @ n +n ® m), wheret is the magnitude of the shear stress and
andn are orthogonal unit vectors. From (2.2.4) follows

— %tr s21> (2.2.4)

e —a—wr(m®n+n®m) + a—wrz <ll—p®p>
dap 9J3p 3 ’
where the unit vectop is orthogonal to the plane spannedmrandn. We observe
that the pure shear load leads to shear creep rate, andbaddlitito the axial creep
rates (Poynting-Swift effect). Within the engineeringepanechanics such effects
are usually neglected.
The assumption that the potential is a function of the secowatiant of the
stress deviator only, i.e.
W=W(57)

leads to the classical von Mises type potential [320]. Iniapfions it is convenient
to introduce the equivalent stress which allows to complagecteep behavior un-
der different stress states including the uni-axial temsithe von Mises equivalent
stress is defined as follows

/3
OoM = ES s =+/—-3Dp, (225)
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where the factoB/2 is used for convenience (in the case of the uni-axial tension
with the stresg the above expression providesy = ¢). With W = W (o,p(0))
the flow rule (2.1.6) results in

. aW((T M) aO'M aW((T M)3 S
cr o 0 0 . 0 e
&= aO'UM oo aUUM 2 0uMm (226)

The second invariant @& can be calculated as follows

2
&L g — § aW(UUM)

2 GO};M
Introducing the notatio#? ,, = 3& -- & and taking into account that

oW (‘%M)
P = - 7 >
ATum o 2 0

one can write 3 W ( )
.or . s . W(oum

_° , = oV 2.2.7

¢ oM - &oM o, ( )

The constitutive equation of steady state creep (2.2.7) pragosed by Odqvist
[236]. Experimental verifications of this equation can bani, for example, in
[295] for steel 45, in [228] for titanium alloy Ti-6Al-4V anith [245] for alloys Al-

Si, Fe-Co-V and XC 48. In these works tubular specimens waaddd by tension
force and torque leading to the plane stress stateon @ n+ t(n@m+m n),
wherec andt are the magnitudes of the normal and shear stresses (seé.3ett
Surfaces2,, = 02 4+ 312 = const corresponding to the same steady state values of
é,m Were recorded. Assuming the Norton-Bailey type potenfdl.g), from (2.2.7)

it follows

3
£ = Ea(rg]\_dls (2.2.8)
This model is widely used in estimations of steady-statere structures, e.g.
[77, 80, 236, 250, 265].

2.2.1.2 Creep Potentials with Three Invariants of the Stres s Tensor. In
some cases, deviations from the von Mises type equivalegsstvere found in ex-
periments. For example, different secondary creep ratésruansile and compres-
sive loading were observed in [195] for Zircaloy-2, in [1G6} aluminium alloy
ALC101 and in [301], p. 118 for the nickel-based alloy RebBé ©ne way to con-
sider such effects is to construct the creep potential asaitun of three invariants
of the stress tensor. Below we discuss a generalized creeptjad, proposed in
[9]. This potential leads to tensorial non-linear consitiel equations and allows to
predict the stress state dependent creep behavior anddsexctar effects. The 6 un-
known parameters in this law can be identified by some basis.t€reep potentials
formulated in terms of three invariants of the stress teaseitermed non-classical

[9].
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By analogy to the classical creep equations, the dependenties stress tensor
is defined by means of the equivalent stregs Various equivalent stress expres-
sions have been proposed in the literature for the fornaradif yield or failure
criteria, e.g. [27]. In the case of creep, different equamhlstress expressions are
summarized in [160]. In [9] the following equivalent strésgroposed

Ueq = a01 + PO + 03 (2.2.9)
with the linear, the quadratic and the cubic invariants
o1 =uily, 03 =wli +ush, 03 =pusly +pushh+ pels, (2.2.10)

wherel; = tr o' (i = 1,2,3) are basic invariants of the stress tensor (see Sect.
A3.1),u; (j=1,...,6) are parameters, which depend on the material properties.
«, B,y are numerical coefficients for weighting the influence of difeerent parts
in the equivalent stress expression (2.2.9). Such a weiggiusual in phenomeno-
logical modelling of material behavior. For example, in 213imilar coefficients
are introduced for characterizing different failure mades

The von Mises equivalent stress (2.2.5) can be obtained f202m9) by setting
x=7=08=1landuyz = 1.5, yp = —0.5. In what follows we sep = 1 and
the equivalent stress takes the form

Oeg = 001 + 02 + Y03 (2.2.11)

It can be verified that the equivalent stress (2.2.11) sasi#.1.9).
The flow rule (2.1.6) allows to formulate the constitutivauation for the creep
rate tensor

éCI’ .

00 a0 a0 \Yor Tor T

( dr | oo 7%) (2.2.12)

Taking into account the relations between the invariantnd the basic invariants
I; and using the rules for the derivatives of the invariante Gect. A.2.4), we obtain

aﬂ do . ]/12[11+]/l30'

w Ml 5 = o
0 g 21+ %121 + §y5[10' b oo (2.2.13)
oo o2
As a result, the creep constitutive equation can be forredlas follows
&7 = W (0eq) e po i I+ HO (P‘4I12 + %b) I+ §y511¢7+ HeO - O
d0¢q o 05%
(2.2.14)

Introducing the notation
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: OW (0eq)
eq = 00
the constitutive equation takes the form

? + &12
SCT T "112111—1— H3o <‘M4 1 3
¢7 =&, ol + o +y (7%

2
> I+ §y511(7+y6(7-(7

(2.2.15)
Equation (2.2.15) is non-linear with respect to the stressdr. Therefore, second
order effects, e.g. [35, 56, 312] are included in the mdtbeghavior description. In
addition, the volumetric creep rate can be calculated fr212.15) as follows

(914 + 2u5) 1§ + 3(ps + p6) I
3(73

(Bpa +u3)hh +y
%]

& = &y [30&]41 +
(2.2.16)
The volumetric creep rate is different from 0, i.e. the coesgibility or dilatation

can be considered.
The derived creep equation has the form (2.1.11) of the géredation between
two coaxial tensors. The comparison of (2.1.11) and (2)2idvides

. paly 3usli + psh
Hy = SZ; (Wl + 7 +7 3032 ,
. 2usly 2.2.17
b= (B3 , (2.2.17)
1 8et] (0—2 +’Y 30_% >
6
H2 - Seq’)/y

03

In [9] the power law function of the equivalent stress (2)1sf@applied to model
creep behavior of several materials. Four independenpdests are required to
identify the material constants. The stress states rehiizeests should include uni-
axial tension, uni-axial compression, torsion and hy@tas{pressure. Let us note,
that experimental data which allows to identify the full eétaterial constants in
(2.2.15) are usually not available. In applications one maysider the following
special cases of (2.2.15) with reduced number of materratents.

The classical creep equation based on the von Mises equiivatiess can be
derived assuming the following values of material constant

\/——12 12 ,/ (2.2.19)

The creep rate tensor takes the form
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. 3 30 — 111 3 g‘ég (UUM)
cr __ aer P, i 2.2.20
" = ¢gp (\/ 58 s) - TV ( )

24/ Zg--
558

Assuming identical behavior in tension and compressionragiecting second
order effects fromx = v = 0, the following equivalent stress can be obtained

Ueg = 02 = \/ 122 + sl (2.2.21)

The corresponding creep constitutive equation takes time fo

SCT

€ €

R oI I+ 30
= &6y (o) P2

(2.2.22)

The parameterg, and 3 can be determined from uni-axial tension and torsion
tests. Based on the experimental data presented in [16%,fd66chnical pure
copper M1E (Cu 99,9%) df = 573 K the parameterg, and s are identified in
[24].

Neglecting the influence of the third invariang = 0), the creep rate tensor can
be expressed as follows

£ = ¢ (00) <0¢y11 + %) (2.2.23)
The above equation describes different behavior in teremmihcompression, and in-
cludes the volumetric creep rate. Three independent tgtstension, compression
and torsion are required to identify the material constants:, andys;.
With the quadratic invariant and the reduced cubic invaisaneral special cases
with three material constants can be considered. Setting € 4 = ps = 0) the
tensorial non-linear equation can be obtained

LI :
" = 57 (0e) (M LN +7y6az 0) (2.2.24)
(72 03

With apiy = pugs = pg = 0 the creep rate tensor takes the form

LI LI+ 21
e — &) (““ ARCLAENLIL S 1‘”) (2.225)

o) o3

The material constants in (2.2.23), (2.2.24) and (2.2.2&ewdentified in [2, 28]
according to data from multi-axial creep tests for plas(e¥C) at room temper-
ature [187] and aluminium alloy AK4-1T at 473 K [94, 125, 29&lrthermore,
simulations have been performed in [2, 28] to compare Eds43), (2.2.24) and
(2.2.25) as they characterize creep behavior under difféoading conditions. The
conclusion was made that cubic invariants applied in (2)2ahd (2.2.25) do not
deliver any significant improvement in the material behadescription.
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2.2.2 Creep of Initially Anisotropic Materials

Anisotropic creep behavior and anisotropic creep moddimgsubjects which are
rarely discussed in the classical monographs and textbooksreep mechanics
(only in some books one may found the flow potentials intreduby von Mises
[320] and Hill [138]). The reason for this is that the expegimal data from creep
tests usually show large scatter within the range of 20% enewore. Therefore,
it was often difficult to recognize whether the differencecireep curves mea-
sured for different specimens (cut from the same materiaiffierent directions)
is the result of the anisotropy. Therefore, it was no use msaropic models with
higher order complexity, since the identification of maikdonstants was difficult
or even impossible. In the last two decades the importanogoiteling anisotropic
creep behavior of materials and structures is discussedaimy rpublications. In
[47, 200, 259, 260, 261, 262] experimental results of crdeguperalloys SRR99
and CMSX-4 are reported, which demonstrate significantosmipy of creep be-
havior for different orientations of specimens with regpecthe crystallographic
axes. In [141] experimental creep curves of a 9CrMoNbV weddaare presented.
They show significant difference for specimens cut in lamgjital (welding) direc-
tion and transverse directions. Another example is a natainforced by fibers,
showing quite different creep behavior in direction of fiband in the transverse
direction, e.qg. [273, 274].

Within the creep mechanics one usually distinguishes lerivie/o kinds of
anisotropy: the initial anisotropy and the deformation ameége induced anisotropy.
In what follows the first case will be introduced. The secoaskecwill be discussed
in Sects 2.3.2 and 2.4.2.

The modeling of anisotropic behavior starts with the coteep material sym-
metry, physical symmetry, symmetry transformation and regtny group, e.g.
[331]. The material symmetry group is related to the symiegtof the materials
microstructure, e.g. the crystal symmetries, the symeetiue to the arrangement
of fibers in a fiber-reinforced materials, etc. The symmetandformations are de-
scribed by means of orthogonal tensors. Two important ahthee

— the reflection
Qn)=I1-2n®n, (2.2.26)

wheren is the unit normal to the mirror plane,
— the rotation about a fixed axis

Q(om) =m@m+ cos (I —m@m) + sinpm x I, (2.2.27)

wherem is the axis of rotation angh (—7 < ¢ < ) is the angle of rotation.

Any arbitrary rotation of a rigid body can be described asmpuosition of three ro-
tations (2.2.27) about three fixed axes [333]. Any symmetgdformation can be
represented by means of rotations and reflections, i.eetisots of the type (2.2.26)
and (2.2.27). The notion of the symmetry group as a set of sstnyntransforma-
tions was introduced in [230]. The symmetry groups of potat axial tensors are
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discussed in [332]. According to [313], p. 82 a “simple sbiglcalled aelotropic or
anisotropic, if its symmetry group is a proper subgroup efdaithogonal group.

The concept of the “physical symmetry group” is related ® sgmmetries of
the material behavior, e.g. linear elasticity, thermalasgion, plasticity, creep, etc.
It can only be established based on experimental obsengatRhysical symmetries
must be considered in the formulation of constitutive eiguat and constitutive
functions. As an example let us consider the symmetry grdupenfourth rank
elasticity tensof¥)C = CiiKle; @ e; @ e, @ ¢, as the set of orthogonal tensa@s
satisfying the equation, e.g. [25, 332],

e =CMQei2Q e 0Q e 2Q e ="C (2.2.28)

The physical symmetries or the set of orthogonal solutidr{2.8.28) can be found
only if all the 21 coordinates of the elasticity tens®tC for a selected basis are
identified from tests. Vice versa, if the physical symmetryup is known then one
can find the general structure of the elasticity tensor base®.2.28). Clearly,
neither the elasticity tensor nor the physical symmetryugrof the linear elastic
behavior can be exactly found from tests. Establishmenhgsigal symmetries of
creep behavior is rather complicated due to relativelydacatter of experimental
data. However, one can relate physical symmetries to thekisgmmetries of ma-
terials microstructure. According to the Neumann prireipidely used in different
branches of physics and continuum mechanics, e.g. [25,3322,

The symmetry group of the reason belongs to the symmetry group of the
consequence.

Considering the material symmetries as one of the “reasand’the physical sym-
metries as a “consequence” one can apply the followingreeé [331]

For a material element and for any of its physical properties every material
symmetry transformation of the material element is a physical symmetry
transformation of the physical property.

In many cases the material symmetry elements are evidemt thhe arrangement
of the materials microstructure as a consequence of manufag conditions, for
example. The above principle states that the physical hehavg. the steady state
creep, contains all elements of the material symmetry. Tlysipal symmetry group
usually possesses more elements than the material symgnetry, e.g. [232].

2.2.2.1 Classical Creep Equations. Here we discuss steady state creep equa-
tions based on the flow rule (2.1.6) and assumption that thepcpotential has a
quadratic form with respect to the invariants of the stressdr. These invariants
must be established according to the assumed symmetry meiwfethe creep be-
havior. The assumption of the quadratic form of the flow ptémriginates from

the von Mises work on plasticity of crystals [320]. Therefothe equations pre-
sented below may be termed as von Mises type equations.
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Transverse Isotropy. In this case the potentid (o) must satisfy the following
restriction

W(Q-o-Q") =W(r), Q(em)=me@m+cosp(l —mxm)+sinem x I
(2.2.29)
In (2.2.29)Q(¢m) is the assumed element of the symmetry group, wheneliy
a constant unit vector ang is the arbitrary angle of rotation abomt. From the
restriction (2.2.29) follows that the potentidd must satisfy the following partial
differential equation (see Sect. A.3.2)
aw\ "
(mxo U><m)--<aa> =0 (2.2.30)
The set of integrals of this equation represent the set aftimmally independent
scalar valued arguments of the potenti#l with respect to the symmetry trans-
formation (2.2.29). The characteristic system of (2.2i80he system of ordinary
differential equations
do
ds
Any system oz linear ordinary differential equations has not more than1 func-
tionally independent integrals [92]. Singds symmetric, (2.2.31) is a system of six
ordinary differential equations and has not more than fivetionally independent
integrals. The lists of these integrals are presented B8.18) and (A.3.26). Within
the classical von Mises type theory second order effectmegéected. Therefore,
we have to neglect the arguments which are cubic with regpdbe stress tensor.
In this case the difference between various kinds of traisgvisotropy considered
in Sect. A.3.2 vanishes. It is possible to use differens It of scalar arguments.
The linear and quadratic arguments from (A.3.15) are

=(mxoc—0xm) (2.2.31)

tro, tro?, m-c-m, m-o*-m (2.2.32)

Instead of (2.2.32) one can use other arguments, for exg@ifba,

1
tro, trs>=tro?— g(tr 0‘)2,

1
m-s-m:m-a-m—gtra, (2.2.33)

2 1
2 2-m—gm-s-mtrcf—g(tra)2

m-sc-m=m-0o

In what follows we prefer another set of invariants which barrelated to (2.2.32)
but has a more clear mechanical interpretation. Let us dposenthe stress tensor
as follows

0= 0pmnMOM+0p+ Ty QM+ MR Ty (2.2.34)

with the projections
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Figure 2.1 Stress state in a transversely isotropic medium and canelpg projections
Tmm, Op QN Ty,

Omm — M - g- m,

op=I-mem)-c-(I-mxm), (2.2.35)

Ty=m-0- (I —-mxm)
The meaning of the decomposition (2.2.34) is obviayg,, is the normal stress
acting in the plane with the unit normat, o}, stands for the “plane” part of the
stress tensor representing the stress state in the isqitepy.t,, is the shear stress

vector in the plane with the unit normed. For the orthonormal basks I andm the
projections are (see Fig. 2.1)

T = Tk + Tl
oy = U'kkk®k—|—0'lll®1+Tkl(k®l—|—l®k)

The plane part of the stress tensor can be further decomppesetiows
1

Now we can introduce the following set of transversely ispitt invariants



2.2 Secondary Creep 35

hiw = Omgpm=m-0-m,
Ly = trop=tro—m-o-m,

1 2 1 2 1 2
I3Wl = Etrsp = Etr(fp— Z(tr(fp)

1 1
= 5 (tr02+(m-a-m)2) —m-o’z'm—z(tro'—m'o"m)z,

Ly = Tp-Tm=m-0>m—(m-c-m)>=mxc-m)-(mxo-m)
(2.2.37)
In the above listly;, and I3, are two invariants o, and I, = 1'51 =Ty Tnm
is the square of the length of the shear stress vector adiitigei plane with the
unit normalm. It is shown in Sect. A.3.2 that the above invariants aregiratis of
(2.2.312).

Taking into account the relations

alﬂ =mem, alﬂ =I-m®m,
Jo Jo
o3 ol
a—gm =5, a—am =Ty OM+mMQ Ty
and the flow rule (2.1.6) we obtain the following creep equrati
or ow ow ow
¢ = —meom+—({I-mem)+—s,
W Lz Lz (2.2.38)
+ —(Tm@M+mQRTy)
Olym

The next assumption of the classical theory is the zero vettioncreep rate. Taking
the trace of (2.2.38) we obtain

W AW 1
tr & = 3 + 2—812 =0 = W=W(,— > Lo I3, Lyy)  (2.2.39)
m m

’ = I - —I =m-0-m— —tro

the creep equation (2.2.38) takes the form

19W oW W
aor -9V B
&= (BGmem—1I)+ 35 T oL, (Tm@M+meTy) (2.2.40)

By analogy to the isotropic case we formulate the equivadeets as follows

0o = fp 302l + 33 L

2 (2.2.41)
_ 1 3 2 | 3pa72
= wq({m-oc-m-— Etra'p + Eaztrsp+ 03 Ty
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The positive definiteness of the quadratic form (2.2.41)aewipled by the conditions
w; > 0,1=1,2,3. The deviatoric part of the stress tensor and its second invariant
can be computed by

1
s = ]m<m®m_§l>+sp+7m®m+m®7mz
2
trs? = g],%1thrs,294rzr,%,

Consequently, the von Mises equivalent stress (2.2.5%vsllfrom (2.2.41) by set-
tingtxl =uay = a3 = 1.

The advantage of the introduced invariants over (2.2.322.@.33) is that they
can be specified independently from each other. For examgti¢he second invari-
ant in (2.2.32) to zero, i.@r 0> = o --o = 0. From this follows thatr = 0 and
consequently all other invariants listed in (2.2.32) amutianeously equal to zero.
In addition, the introduced invariants can be related tacglpstress states which
should be realized in creep tests for the identification ofstitutive functions and
material constants. With the equivalent stress (2.2.4d)ctieep equation (2.2.40)
can be rewritten as follows

o 3 oW
20,4 00,

1
[‘lem <m Km — §I> + a8y +0¢3(Tm Xdm-+m ®Tm)}

(2.2.42)

With the notatiores), = go‘_’v (2.2.42) takes the form
oq

) 3 éCV 1
&7 = E% [oqlm (m @m— 51) + 28y +a3(Ty @m +m ®Tm):| (2.2.43)
eq

Let us introduce the following parts of the creep rate tensor

gr. = m-¢7-m,
g = (I-mom)-&"-(I-mxm),
_ _ 1 (2.2.44)
& = & - Es’%m(l —mem),
¥y = m-¢7-(I-mem)
From (2.2.42) we obtain
&cr 3 &cr sCr
Scr eq ACT eq LT eq
Emm — 0(10_—61/]];7/1, ep = ED‘ZU_G(/]SP’ Y = Eﬂéga_—equ (2245)

Similarly to the isotropic case the equivalent creep ratelmacalculated as follows

1 21 41
Cr . 2 . .. . = . . .
€oq = \/“1 (&5im) gazeg 6%’/ 3 0637% Y (2.2.46)
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Figure 2.2 Stress state in an orthotropic medium and correspondifgqonscy,n,, Tnn,

The equivalent creep rate (2.2.46) is useful for the vetificeof the creep potential
hypothesis and the assumed quadratic form of the equivatesgs with respect
to the transversely isotropic invariants of the stressaenbhe introduced creep
equation contains three material constantand the equivalent creep ratg.

The assumptions of transverse isotropy and the quadraticddthe equivalent
stress are widely used in models of elasticity, plasti@tgep and failure of fiber
reinforced composites, e.q. [7, 74, 273, 274, 279, 298],carettionally solidified
superalloys [42, 213]. The proposed equations will be appin Sect. 3.2 to the
description of anisotropic creep in a multi-pass weld metal

Orthotropic Symmetry. In this case the potentidV/ (o) must satisfy the follow-
ing restriction

W(Q;-c-QN) =W(r), Qi=I-non;, i=123 (2.2.47)

In (2.2.47)Q; denote the assumed symmetry elements - three reflectiohgavit
spect to the planes with unit normats;, Fig. 2.2. The unit vectorgny, +n,, +tn;
are assumed to be orthogonal, he: n; = 0,1 # j . In Sect. A.3.3 a set of scalar
arguments which satisfy the above restrictions is predenye(A.3.32). As in the
previous paragraph we assume the quadratic form of the fialtarith respect to
the stress tensor. One can use different sets of scalar argsiof the stress tensor
satisfying (2.2.47), see for example [73],

n-o0-ny, Mny-0-n3, N3-0-Mn3,

ni-o%-ny, ny-0%-ny, nz-o’-n3
Figure 2.2 shows the components of the stress tensor in aszartframe;, three
planes of symmetry characterized by the unit vectars and components of the

stress tensor with respect to the planes of symmetry. Teesstensor can be repre-
sented as follows



38 2 Constitutive Models of Creep

O = Opn N1 QN1+ OnynyN2 QN + Opyny iz @ N3
+ Tnlnz(m KNy +ny ® n1) + Tnyn, (n1 ®Nn3 +n3® nl)
+  Tayn, (nz QN3 +n3 X nz)
with
Oning =M1+ 0N, Opyny =MN2+0 N3, Opzpny = N30 N3,
Tiyn, —=N1°0 N2, Tyny =MN1:0-N3, Tyny —HN2-0-N3

According to Sect. A.3.3 we use the following orthotropiganants of the stress
tensor
Iy = Omny, Ingny = Ononys Ingny = Ongns,

_ 2 _ 2 _ 2
Inlnz - Tnlnzf In1n3 - Tnlngf In2n3 - Tnzns

Assuming that the creep potential is a function of six arguisietroduced, the flow
rule (2.1.6) leads to the following creep equation

°14%
= nq X nq +
aInlnl
14%
alnlnz
oW
a1711713
°14%

+ Ny 0-n3(nx@n3 +n3@ny)

(2.2.48)

e’ ny Qny + n3 @ nj

W

_|_

ny-o-ny(ng@ny;+ny;Rnq)
(2.2.49)
_|_

ny-0-n3(n @n3 +n3n)

The assumption of zero volumetric creep rate leads to

e — oW + oW + oW
Onn,  Olnyn, — Olnn,

=0 (2.2.50)

From the partial differential equation (2.2.50) followsathtthe potentialV is a
function of five scalar arguments of the stress tensor. Theacteristic system of
(2.2.50) is ; ; ;

Inlnl _ Iﬂz"z _ In3n3 _

i 1, i 1, 15 = 1 (2.2.51)
The above system of three ordinary differential equatiasstivo independent inte-
grals. One can verify that the following invariants

1 1 1
]1 = _(Inznz - In3n3), ]2 = _(In3n3 - Inlnl)/ ]3 = _(Inlnl - Inznz)

2 2 2
(2.2.52)
are integrals of (2.2.51). Only two of them are independarg th the relation
J1 + J» + Jz = 0. If the principal directions of the stress tensor coincidéhe
directionsn; thenrni,,/, = 0,1 # j and the above invariants represent the principal
shear stresses. An alternative set of integrals of (2.2s51)
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- 1 - 1 - 1
]1 = Inlnl — gtr ag, ]2 = In2n2 — gtr g, ]3 = In3n3 — gtI‘O' (2253)

If the principal directions of the stress tensor coincidéhwj then the above invari-
ants are the principal values of the stress deviator. Fofotimeulation of the creep
potential in terms of invariants the relatign 4 ], + J5 = 0 must be taken into
account.

In what follows we apply the invariants (2.2.52). The eqlewa stress can be
formulated as follows

0k = 2B1J7 +2B2J3 +2B3)3
+  3B12Inyn, + 3B131Ininy + 3P231Inym,

The von Mises equivalent stress (2.2.5) follows from (2428 setting8; = B> =
B3 = B12 = P13 = P23 = 1. Applying the flow rule (2.1.6) we obtain the following
creep equation

(2.2.54)

éCV

¢ = f {.31]1 (ny @ny —n3 @ng)
eq

+B2f2(n3 @n3 —ny @nyq)

+B3J3(n @ny —ny @ny)

3 (2.2.55)
+§,312Tn1n2 (m ®@ny +ny@n)

3
+§ﬁ13Tn1n3 (m ®@n3z +n3@n)

3
+§,823Tn2n3 (n2 XNz +n3Q nz)}

The equivalent stress and the creep equation includesd®pendent material
constants. Therefore six independent homogeneous stagss should be realized
in order to identify the whole set of constants. In addititte dependence of the
creep rate on the equivalent stress must be fitted from thdtsex uni-axial creep
tests for different constant stress values. For examptaeipower law stress func-
tion provides a satisfactory description of steady-stagee then the constamt
must be additionally identified.

An example of orthotropic creep is discussed in [163] fordaheminium alloy
D16AT. Plane specimens were removed from rolled sheet alomg directions:
the rolling direction, the transverse direction as well adar the angle of 45to the
rolling direction. Uni-axial creep tests were performe@ a8 C and 300C within
the stress range 63-90 MPa. The results have shown that aC2x#8ep curves
depend on the loading direction while at 3@the creep behavior is isotropic.

Other cases. The previous models are based on the assumption of the digadra
form of the creep potential with respect to the stress tenBoe most general
guadratic form can be formulated as follows

0 = %a-. 4B..o, (2.2.56)
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whereoe, plays the role of the equivalent stress. The fourth rankoeff$B must
satisfy the following restrictions

a..(4)B..a > 0, a-- (4)B = (4)B..a, C“(4)B :0,

T/ c = _CT/

(2.2.57)
Va,cwitha—=a

wherea andc are second rank tensors. Additional restrictions folloanfrthe as-
sumed symmetries of the steady state creep behavior. Foypéxaf the orthogonal
tensorQ stands for a symmetry element, the structure of the teisBrcan be es-
tablished from the following equation

(B = BNQ.e;0Q-¢;0Q e, ©Q-e; =B, (2.2.58)

wheree;, i = 1,2,3 are basis vectors.

The flow rule (2.1.6) provides the following generalizedsaiopic creep equa-
tion o

o Eeq (4)B B cr 14%

20¢4

7 feq = 00
The fourth rank tensors satisfying the restrictions (Z2.&e well-known from
the theory of linear elasticity. They are used to represtadtie material proper-
ties in the generalized Hooke'’s law. The components of thessors in a Carte-
sian coordinate system are given in the matrix notation inyrtextbooks on lin-
ear elasticity as well as in books and monographs on congposdterials, e.g.
[6, 7, 29, 122, 256, 309]. Furthermore, different coordentee representations of
fourth rank tensors of this type are discussed in the liieeatFor a review we re-
fer to [76]. One of these representations - the projectaresamtation is applied in
[47, 48, 200] to constitutive modeling of creep in singlestey alloys under as-
sumption of the cubic symmetry.

Let us recall that (2.2.59) is the consequence of the creggnpal hypothesis
and the quadratic form of the equivalent stress with respmethe stress tensor.
Similarly to the case of linear elasticity [309] one can mrdkat only eight basic
symmetry classes are relevant according to these assursplibe basic symmetry
classes and the corresponding number of independent natediof the tensot'B
are listed in Table 2.1. The number of independent cooréiiaidicates the number
of material constants which should be identified from crespst This number can
be reduced if the volume constancy is additionally assuried.example, in the
cases of transverse isotropy and orthotropic symmetry tineber of independent
coordinates oB reduces to 3 and 5, respectively (see previous paragraphs).

(2.2.59)

2.2.2.2 Non-classical Creep Equations.  Non-classical effects are the depen-
dence of secondary creep rate on the kind of loading and decater effects,
see Sect. 2.2.1. Examples of such behavior are differemipcrates under ten-
sile and compressive stress or the effect of reversal of ltlearsstress. The last
case is observed in creep tests on tubular specimens unpkedagorque. The
change of the direction of the applied torque leads to diffevalues of the shear
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Table 2.1 Basic symmetry classes and number of independent cooedinéthe tensot*) B

Symmetry class Number of independent
coordinates of*)B

triclinic symmetry 21

monoclinic symmetry 13

orthotropic or rhombic symmetry
trigonal symmetry

tetragonal symmetry

transverse isotropy or hexagonal symmetry
cubic symmetry
isotropic symmetry

strain rate. The effect of shear stress reversal is ususfiiaimed to be the result
of the anisotropy induced by the deformation process (e@igoaopic hardening)
or anisotropy induced by damage evolution. Phenomendabgiodels of induced
anisotropy will be introduced in Sect. 2.3.2 and 2.4. Herecaasider the case of
initial anisotropy without discussion of histories of thefakmation, damage or man-
ufacturing processes. Nevertheless, a phenomenologmétinof anisotropic creep
should be able to reflect the above mentioned effects simgedte observed exper-
imentally. In order to describe non-classical effects thadyatic form of the creep
potential should be replaced by a more general form inctudihinvariants of the
stress tensor for the assumed symmetry group. In this caseutnber of material
constants rapidly increases. Furthermore, the idenidicaind verification of the
model requires creep tests under combined multi-axiadsstates. In what follows
we limit ourselves to some remarks regarding the genenattsire of constitutive
equations and kinds of tests for the identification.

Transverse isotropy. The creep potential must satisfy the restriction (2.2.29)
leading to the partial differential equation (2.2.30). Tiheegrals represent the set
of functionally independent arguments of the creep paikntine integrals are pre-
sented in Sect. A.3.2 for two transverse isotropy groups. first group is formed
by all the rotations about a given axs i.e

Q(ym) =mem+cosp(I —-m@m) +sinym x I

The second group additionally includes rotations on thdeangabout any axis
orthogonal tamn, i.e.

Qi =Q(np)=2p©p—1, detQ=1, p-m=0

Let us note that there is an essential difference in thesegtaaps since the creep
potential depends on different non-quadratic argumenthefstress tensor. Here
we limit our considerations to the second case which is widécussed in the

literature on anisotropic elasticity, plasticity and @¢&8, 73, 84, 279, 286], where
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the following invariants are applied

tro, tro?, tro°, m-c-m, m-c*-m (2.2.60)

To be consistent with derivations in Sect. 2.2.2.1 let uslwselecomposition of the
stress tensor (2.2.34) leading to the following set of iargs

hy = Owm=m-0-m,
Ly = trop=troc—m-o-m,

1 -1 5, 1 2
I3Wl = Etrsp = Etr(fp — Z(tr(fp)

2 2

1 1
= = [traz%—(m-a-m)z} -m-0*-m— —(trc—m-o-m)?,

2 4
Ly = Ty Tm=m-0>m—(m-c-m)>=mxc-m)-(mxo-m)
Iy = Tw-Sp-Tm=m-0°-m—2(m-0-m)(m-0*-m)

3 2

1
—5(tro—m-c-m) [m-a em— (m-o-m)?

(2.2.61)
The meaning of the first four invariants is explained in intS@c2.2.1. The last
cubic invariant is introduced instearlo>. One can prove the following relation

+ (m-o-m)

3 1
tr 0’3 = Il3m + 3 Ly + 3Dy I3 + EIZmLLm + Elgm + 35

Assuming that the creep potentidl is a function of five scalar arguments (2.2.61)
and applying the flow rule (2.1.6) we obtain the followingaepeequation

1
& =himem-+ (h2—§h514m)(1—m®m) +h3op +hy(Tw@m+m®Ty)

+hs (T @ T + MR Ty Ty + Ty 0y @),
(2.2.62)

where
oW

oI,
The last term in the right-hand side of (2.2.62) describesrs# order effects. The

meaning of these effects is obvious. In the case of non-zeansverse shear stress”
vector

h; = i=1,2...,5

Ty=m-0-(I —mxm)

the elongation in the direction af,, can be considered. The vect; = s, - T
belongs to the isotropy plane, ig, -m = 0. In the case thag,, # 0 (2.2.62)
describes an additional “transverse shear strain rateteff

2 For the description of elastic material behavior instead @ftrain tensor, e.g. the Cauchy-
Green strain tensor is introduced. The five transverselydpix invariants are the argu-
ments of the strain energy density function.
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In order to formulate the creep constitutive equation ormukhspecify an ex-
pression for the equivalent stress as a function of thedoted invariants. As an
example we present the equivalent stress by use of polyfowiizhe type (2.2.9)
and (2.2.10)

Oeq = a0y + 02 + Y03, (2.2.63)
with
o = pnhm+ p2lm,
o = unl?, +poolimlm + w3l3,, + woalsm + poslam, (2.2.64)
o3 = umnB, +usld, by + usahimls, + uzals,, + paslhimlam

+  mselomIzm + M3z limlam + H3glom lam + U39 lsm

The equivalent stress (2.2.63) includes 16 material cotsstg; and two weight-

ing factorsa and «y. The identification of all material constants requires etiff

ent independent creep tests under multi-axial stresssstate example, in order

to find the constanjzg creep tests under stress states with nonzero cubic invari-
ant Is,, should be carried out. An example is the tension in the ipgtrolane
combined with the transverse shear stress leading to thsssstate of the type

o =opny @ny + (M ®m+m nq), whereoy > 0 andt > 0 are the mag-
nitudes of the applied stressas, is the direction of tension and, - m = 0. In this
case

1 1 5
sp = an(nl ®ny—np®ny), ny-ny =0, Tm = TN, Isy = EU’QTO

By analogy to the non-classical models of isotropic creequuised in Sect.
2.2.1 different special cases can be introduced. Settirg 0 in (2.2.64), second
order effects will be neglected. The resulting constiritimodel takes into account
different behavior under tension and compression. To fisdtnstants;; andp
creep tests under tension (compression) along the direstias well as tension
(compression) along any direction in the isotropy planeukhbe carried out. Set-
ting « = 0 the model with the quadratic form of the creep potential witonstants
can be obtained. The assumption of the zero volumetric asepwill lead to the
model discussed in Sect. 2.2.2.1.

Second order effects of anisotropic creep were discusseBelign [52, 58].
He found disagreements between creep equations based threting of isotropic
functions and the creep equation of the type (2.2.62) acupro the potential hy-
pothesis and the flow rule. The conclusion was made that ttem{i@ theory leads
to restrictive forms of constitutive equations if compatedhe representations of
tensor functions.

Let us recall the results following from the algebra of ispic tensor functions
[71]. In the case of transverse isotropy group charactérigethe symmetry ele-
ments (A.3.18) the statement of the problem is to find the ig¢mepresentation of
the isotropic tensor function of the stress tens@nd the dyadn ® m (so-called
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structure tensor). The constitutive equation describirggdreep behavior must be
found as follows

¢ = floomem),

wheref is an isotropic tensor function of two tensor arguments. Jéweral repre-
sentation of this function is [73]

flomam) = fim@m+ fo(I —-m@m) + f30 + f40>

+ fs(mem-c+o-mem)+ ff(meam-0>+0?-mem),
(2.2.65)
where the scalarg, i = 1,...,6, depend on the five invariants of the stress tensor
(2.2.60). Betten found that the last term in (2.2.65) is mggs$n the constitutive
equation which is based on the potential theory. In orderisouss the meaning
of the last term in (2.2.65) let us introduce the identitigsick follow from the
decomposition of the stress tensor by Eqgs (2.2.34) and3@).2.

o> = Izmsp+(13m+}11§m)(1—m®m)+m®s,,-rm+rm-sp®m
+ (Ilm+%12m)(rm®m+m®rm)+(112m+14m)m®m+7m®rm,
(2.2.66)
mm-c+oc-mem = TpuOmM+mTy +2L,meOm,
MOM-0>+0>-mOM = MRSy Ty +Ty-Spdm

1
+ (hm+ EIm)(rm@@m +mMRTy)

After inserting (2.2.66), (2.2.34) and (2.2.36) into (BZ). we obtain the following
creep equation

&7 = gmeam+g(I—mem)+ g8y + ga(m Ty + Ty @m)
+ g5(M®Sy T +Tm+5p @M) + 86T @ T
(2.2.67)
with ) )
g1 = fi+ fa(Ii, + L) +2fshim + 2f6 (Iam + I3,,),
1 1
g =fo+ §f312m + f4(Izm + ZI%m)/
93 = fa+ bufa,
1
g4 = (fa+ fo) (I + EIZm) + fs,
85 = fa+ fe,

6 = fa
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We observe that Eqg. (2.2.67) based on the theory of isottepsor functions does
not deliver any new second order effect in comparison to.62)2 The only dif-
ference is that the two last terms in (2.2.67) charactayizive second order ef-
fects appear with two different influence functions. The panson of (2.2.67) with
(2.2.62) provides the following conditions for the exigterof the potential

oW - oW _ +1 I
—alm = 81 —aIZm = 2g5 oy
514% 514% 514%

@:83/ m=g4/ Ezga 86 =85

Furthermore, the functiong must satisfy the integrability conditions which can be
obtained by equating the mixed derivatives of the potentitid respect to invariants,
i.e.
FW o PW

0L 0 Iy B aIkmaliml
Let us note that the models (2.2.62) and (2.2.67) are re=drio the special case of
transverse isotropy. In the general case one should antdigzzreep potential with
the invariants listed in (A.3.26).

Other cases. Alternatively a phenomenological constitutive equatidraniso-
tropic creep can be formulated with the help of material desise.g. [2]. Introduc-
ing three material tensotd, ('B and (6)C the equivalent stress (2.2.63) can be
generalized as follows

itk ik=12,...,5

Oeq = X071 + 02 + Y03 (2.2.68)
with
o] :A..g’/ 0'22 =0-- (4)B..gl (fg =0 (0.. (6)C..g) (2269)

The structure of the material tensors must be establisloed the following restric-
tions

A’:Q-A-QT:AifQ-ei@)Q.ej:A,
@B = BHQ.;0Q-6;©Q-e,®Q-¢; =B,

(6)c' = Ciikm.e; 2 Qe ©Q e, 9Q- e, ©Q e, © Q- ey =)C,
(2.2.70)
whereQ is an element of the physical symmetry group. The creep patdrypoth-
esis and the flow rule (2.1.6) lead to the following creep &éqna

. oW 80'1 802 803
cr . 777 -1 4 79
£ = 3%y (tx o g 7 80> (2.2.71)
Taking into account the relations
ooy dcy, WBeo 303 o-0C-0
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a generalized anisotropic creep equation can be formuéetéollows

@B.. . (6)C..
&f:gg<mA+- Bro o-"C ”), =W 5573

3 o3 “T doey

In [51, 265] the following anisotropic creep equation isgwsed
¢ =H+WM-o+(OL-0)-0 (2.2.74)

Comparing the Egs (2.2.73) and (2.2.74) the material terfdof* M and(®)L can
be related to the tensors, (/B and(®)C.

The tensors4, (B and (6)C contain 819 coordinatesA(- 9, (4)B - 81, (6)C
- 729). From the symmetry of the stress tensor and the creéeperasor as well as
from the potential hypothesis follows that “only” 83 coardtes are independem (
-6, B -21,(6)C - 56). Further reduction is based on the symmetry considesat
The structure of material tensors and the number of indeggegrmbordinates can be
obtained by solving (2.2.70).

Another possibility of simplification is the establishind special cases of
(2.2.73). For instance, equations with a reduced numberni@meters can be de-
rived as follows

—a=19=0
4)B ..
Oeq = 01 + 02, &7 = ég] (A + 0) , (2.2.75)
%]
—a=0v7=1
. . (4)B..¢7 o-- (6)C..0'
Ueqg = 02 + 03, & = 8?:7 ( o + 0_% ’ (2.2.76)
—a=09=0
. . (4)B o
Oeg = 03, &7 = gg; ( o ) (2.2.77)

The last case has been discussed in Sect. 2.2.2.1. Exanfiglpplication of con-
stitutive equation (2.2.73) as well as different cases airegtries are discussed in
[2,9].

2.2.3 Functions of Stress and Temperature

In all constitutive equations discussed in Sects 2.2.1 ah@ 2he creep potential or
the equivalent creep rate must be specified as functionseadhivalent stress and

the temperature, i.e.
oW
~Cr _
Eeq ao'eq f(UQQ’ T)
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In [176] the functionf is termed to be the constitutive or response function. Fer th
formulation of constitutive functions one may apply themwad foundations from
materials science with regard to mechanisms of creep detomand related forms
of stress and temperature functions. Furthermore, expetehdata including fam-
ilies of creep curves obtained from uni-axial creep testcéotain ranges of stress
and temperature are required. It is convenient to presesetfamilies in a form
of minimum creep rate vs. stress and minimum creep rate rgdmture curves
in order to find mechanical properties of the material wittie steady-state creep
range.

Many empirical functions of stress and temperature whidbwato fit exper-
imental data have been proposed in the literature, e.g. [226, 266, 292]. The
starting point is the assumption that the creep rate may beridd as a product of
two separate functions of stress and temperature

Sce; = fo(0eq) fr(T)
The widely used functions of stress are:

— power law

n—1

00

Ug q

fo(0eq) = &0 (2.2.78)

00

The power law contains three constaritg ¢y, ) but only two of them are inde-
pendent. Instead @f andoy one material constant

[
1l

can be introduced.
— power law including the creep limit

!

o n
fo(oeq) = £ <% — > , Oeq > 0]
0

If 0eg < 0y, the creep rate is equal zero. In this ca§és the assumed creep limit.

Let us note that the experimental identification of its vatudifficult, e.g. [266].

— exponential law

. Ueq
Oeq) = €9 €XP —
fo( eq) 0 €xXp %

¢y, 0g are material constants. The disadvantage of this expresssibat it predicts
a nonzero creep rate for a zero equivalent stress

fa(o) =& 5& 0

— hyperbolic sine law

N
= nh —
fg (0’@5]) SO S1 0_0
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For low stress values this function provides the linear ddpace on the stress

Ug q

fo(0eq) = 5'00—0

Assuming the constant temperature equations for the dguivereep rate can be
summarized as follows

s";g = aafq Norton, 1929Bailey, 1929

o,
egg =b <exp Uig — 1) Soderberg, 1936

0 _
¢ = asinh aio" Prandil, 1928Nadai, 1938McVetty, 1943 (2 2 79)
€7 = o) + a0, Johnson etal., 1963

o n
& =a (sinh ﬂ) Garofalo, 1965
)

wherea, b, a1,a,,09,1n,1n1 andn, are material constants. The dependence on the
temperature is usually expressed by the Arrhenius law

fr(T) = exp[-Q/RT],

whereQ andR denote the activation energy and the Boltzmann’'s constaspec-
tively.

For the use of stress and temperature functions one shdddirteo account
that different deformation mechanisms may operate foegfiit specific ranges of
stress and temperature. An overview is provided by the deftion mechanisms
maps proposed by Frost and Ashby [117], Fig. 2.3. Contoucsiatant strain rates
are presented as functions of the normalized equivaleessty, /G and the ho-
mologous temperaturgé/ T,,, whereG is the shear modulus arfg, is the melting
temperature. For a given combination of the stress and thedmature, the map
provides the dominant creep mechanism and the strain rate.

Let us briefly discuss different regions on the map, the mashas of creep
deformation and constitutive functions derived in matsrigcience. For compre-
hensive reviews one may consult [116, 156, 222]. The originthe inelastic de-
formation at the temperature ran@e& < T/T, < 0.7 are transport processes
associated with motion and interaction of dislocations diffdision of vacancies.
Here we limit our consideration to the two classes of physitadels - dislocation
and diffusion creep. Various creep rate equations withéndilslocation creep range
are based on the Bailey-Orowan recovery hypothesis. Amatéarrier stress;,;;
being opposed to the dislocation movement is assumed. Wikgpldstic strain oc-
curs the internal stress increases as a result of work hagldoe to accumulation
of deformation and due to increase of the dislocation dgn&g the material is sub-
jected to the load and temperature over certain time, tieeriat stress;,;; recovers.
In the uni-axial case the rate of change of the internal sireassumed as follows
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Figure 2.3 Schematic deformation-mechanism map (L.T.Creep - low &atpre creep,
H.T.Creep - high temperature creep)
O'int = héCV — Oint,

whereh andr are material properties related to hardening and recoresyectively.
In the steady staté;,,; = 0 so that

) T'Tint
SCV — mn
h
Specifying the values far, h ando;,,; various models for the steady state creep rate

have been derived. An example is the following expressiondétails of derivation
we refer to [116])

« Do Q
o D e (_ﬁ)
whereD is the diffusion coefficient.

Further models of dislocation creep are discussed undemassamption of
the climb-plus-glide deformation mechanism. At high teraperes and moderate
stresses, dislocations can climb as well as glide. The glidislocations produced
by the applied stress is opposed by obstacles. Due to diffusi vacancies, the
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dislocations can climb around strengthening particle® iflelastic strain is then
controlled by the glide, while its rate is determined by thmb. The climb-plus-
glide mechanism can be related to the recovery-hardenipgthgsis. The harden-
ing results from the resistance to glide due to interactibmoving dislocations
with other dislocations, precipitates, etc. The recovegchanism is the diffusion
controlled climb which releases the glide barriers. Theblplus-glide based creep
rate models can be found in [116, 117, 222]. The common réstie power-law

creep
cr Oeqg \" Q

Equation (2.2.80) can be used to fit experimental data fongeraf stresses up
to 1073G. The exponent: varies from 3 to about 10 for metallic materials. At
higher stresses abou® 3G the power law (2.2.80) breaks down. The measured
strain rate is greater than the Eq. (2.2.80) predicts. Withé range of the power-
law break down a transition from the climb-plus-glide to tilele mechanism is
assumed [117]. The following empirical equation can beiagpk.g. [117, 222],

€oy [sinh (a%)rexp <—%> , (2.2.81)

wherea is a material constant. lfo,; /G < 1 then (2.2.81) reduces to (2.2.80).

At higher temperaturesi(/ T,, > 0.7) diffusion mechanisms control the creep
rate. The deformation occurs at much lower stresses anttséxam diffusion of
vacancies. The mechanism of grain boundary diffusion (€ckgep) assumes dif-
fusive transport of vacancies through and around the sesfa€grains. The devi-
atoric part of the stress tensor changes the chemical jtenhatoms at the grain
boundaries. Because of different orientations of grainndaries a potential gra-
dient occurs. This gradient is the driving force for the grbundary diffusion.
The diffusion through the matrix (bulk diffusion) is the divant creep mechanism
(Nabarro-Herring creep) for temperatures close to theinggftoint. For details con-
cerning the Coble and the Nabarro-Herring creep models fee te [116, 222].
These models predict the diffusion controlled creep rateet@ linear function of
the stress.

In addition to the dislocation and the diffusion creep, tremgboundary sliding
is the important mechanism for poly-crystalline materidlsis mechanism occurs
because the grain boundaries are weaker than the orderg@lltmg structure of
the grains [222, 271]. Furthermore, the formation of voidsl anicro-cracks on
grain boundaries contributes to the sliding. The whole ae&tion rate depends on
the grain size and the grain aspect ratio (ratio of the gramedsions parallel and
perpendicular to the tensile stress direction). Samplésaiarger grain size usually
exhibit a lower strain rate.
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2.3 Primary Creep and Creep Transients

In structural analysis applications it is often desirallednsider stress redistribu-
tions from the beginning of the creep process up to the cretpoanstant rate. Let
us note, that in a statically undetermined structure stredistributions take place
even if primary creep is ignored. In the case of rapid chamjeternal loading
one must take into account transient effects of the mateelavior. Let us discuss
some experimental results related to creep under variablg-axial loading con-
ditions. The majority of multi-axial creep tests have beerfgrmed on thin-walled
tubes under combined action of tension (compression) famdeorque. In this case
the uniform stress state = on ® n + t(n ® m + m ® n) is assumed, where
andt are calculated from the force and torque as well as the geprmokthe cross
section (see Sect. 1.1.2). Figure 2.4 presents a sketclpefimental data for type

e, %
L5

0 2.5 5 7.5 10

0 2.5 5 7.5 10

Figure 2.4 Transient creep at combined tension and torsion. Effechefriormal stress
reversala Normal strain vs. timeh shear strain vs. time (after [148])
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Figure 2.5 Creep under shear stress reversals (after [248])

304 steel (%Cr-lMo) at 600C [148]. A tube was loaded the first 5 hours by the
constant tension force and the constant torque. After tigatlirection of the force
was reversed while the torque kept constant. The norméhstsatime creep curve
under compressive force after the reversal differs subatgnfrom the reference
creep curve under tensile force, Fig. 2.4a. The absoluteeval the strain rates be-
fore and after the reversal differs significantly. Furthere) the shear strain vs. time
creep curve is influenced by the reversal of the axial forag, E4b.

Figure 2.5 shows a sketch of experimental results obtaing@48] for IN-
CONEL Alloy 617 (NiCr22Co12Mo) tubes at 990G under cyclic torsion. Every
100 h the applied torque was reversed leading to the chanfje sfgn of the shear
stress. The inelastic shear strain accumulated after gatd af positive (negative)
torque decreases rapidly after few cycles of reversalsil&@itmehavior is reported
in [238] for the type 304 steel, where, in addition, the dffetcthermal exposure
before and during the loading is discussed. Creep behatisteels is usually ac-
companied by the thermally induced evolution of structureasbide precipitates
(coarsening or new precipitation). The effect of ageing aaggnificant influence
on the transient creep of steels as discussed in [238]. Feongbe, the decrease of
inelastic shear strain under alternating torsion was ne¢ed if tubular specimens
were subjected to the thermal exposure within the timevatesf 500 h before the
loading.

Additional effects have been observed in the case of relgeadahe applied
torque combined with the constant tension force, Fig. 2i&t,Fthe axial strain
response is significantly influenced by the cyclic torsioacé@d, the rate of the
shear strain depends on the sign of the applied torque. Sedpanse indicates the
anisotropic nature of the hardening processes.

Multi-axial creep behavior is significantly influenced by ttheformation history.
As an example, Fig. 2.7 presents a sketch of results repuorfdd 7] for type 304
stainless steel. Tubular specimens were first loaded upetsttiessr leading to



2.3 Primary Creep and Creep Transients 53

€ %

25

00 200 300 400 500

1.5

0.5

00200 300 400 500

0 ! ! ! ! ! ! ! !
0 50 100 150 200 250 300 350 400 450

0

" &
-1.5 ‘%

2 ! ! ! ! ! !
0 50 100 150 200 250 300 350 400 450

t, h

Figure 2.6 Creep at combined tension and torsion. Effect of the sheassteversala
Normal strain vs. timeh shear strain vs. time (after [248])

the plastic strain 08%. After that the specimens were unloadedr§o Subsequent
creep tests have been performed under combined constamalgiraine and shear
strain T. Different stress states leading to the same value of theMises stress
ooM = V024312 = 0y were realized. The results show that the tensile creep
curve of the material after plastic pre-straining diffeigngicantly from the creep
curve of the “virgin material” (curve a). Furthermore, thenvMises creep strain
vs. time curves after plastic pre-straining depend signitly on the type of the
applied stress state (compare, for example, tension, @jrt@sion, curve b, and
compression, curve e).

In this section we discuss phenomenological models to desprimary creep
and creep transients under multi-axial stress states.afergth models of time and
strain hardening. After that we introduce the concept oékiatic hardening which
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Figure 2.7 Effect of initial tensile plastic strain on subsequent preehavior under com-
bined tension and torsion, for details see [157]

is widely used for the characterization of transient crefégcts under constant and
varying loading. Our purpose is to discuss general ideasrréban enter into details
of empirical functions of stress and temperature as weliféerent forms of evolu-
tion equations for hardening variables (the so-calledérard) rules). Regarding the
hardening rules one may consult the comprehensive revi@éws237] and mono-
graphs [174, 185, 208, 301]. For classification and assegsofalifferent unified
models of plasticity-creep interaction we refer to [1489]1L4

2.3.1 Time and Strain Hardening

The time hardening model assumes a relationship betweagthealent creep rate,
the equivalent stress and the time at fixed temperature, i.e.

ft(écerqfaeq/t) =0

The strain hardening model postulates a relationship kerivtiee equivalent creep
rate, the equivalent creep strain and the equivalent satés®d temperature. In this
case

fS(éceZ;/E%/Ueq) =0
Figure 2.8 illustrates the uni-axial creep response affi@ading (stress jump from
o1 toon att = t,). Based on the time hardening model the strain rate at t, is
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Figure 2.8 Creep response at variable loading (the open circles déypital experimental
values)

determined by the stregs and the time, only. Thus the creep curve for > ¢,
can be obtained by translation of the cuBB€ to the pointD. Following the strain
hardening model the strain rate depends on the stress amdtdhenulated strain.
The creep curve after the stress jump can be determinedrstatag the curveAC
(the creep curve for the stress starting from the creep strasy accumulated in
timet,) along the time axis. It can be shown that for specific fumgiof stress, time
and strain as well as under the assumption of the constasssind temperature the
strain and the time hardening models lead to the same desaripor example, if
we set

€oq = AT t" (2.3.1)

according to the time hardening withn andm as the material constants the inte-
gration with respect to the time variable assumipg= const ands‘;f7 =0att=0
leads to

1
ecn = aoy, | i (2.3.2)

On the other hand applying the strain hardening model, thepcequation can be
formulated as

£ = bk, (e5n)' (2.3.3)
Taking into account (2.3.2) the time variable can be elit@ddrom (2.3.1). As a
result the following relations between the material comist@an be obtained

1 n m
b=la(m+1)"m1, k Y l ——
Vice versa, the strain hardening equation (2.3.2) can tegyiated for the special
choice ofk and! and foro,; = const. Again, if sg; = 0 att = 0 we obtain (2.3.2).
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Applying the time hardening model the von Mises-Odqvistepréheory (see
Sect. 2.2) can be generalized as follows

3
&7 = Eaaz’fl\_/fl t"s (2.3.4)
By analogy one can formulate the creep constitutive equatith the strain hard-
ening

3
&7 = Sbogy (e5)'s (2.3.5)

The time and the strain hardening models provide simple erapdescription
of the uni-axial creep curve within the range of primary greed are still popular
in characterizing the material behavior, e.g. [137, 143,)1Despite the simplicity,
both the models suffer from significant limitations, eveajplied stress and tem-
perature are constant. The disadvantage of the time haglemdel is that the time
variable appears explicitly in equation (2.3.1) for thesgreate. An additional draw-
back is that the constants and! take usually the values1 <m < 0,—-1 <1 <0
as the result of curve fitting. HCJ; = 0 att = 0then Eq. (2.3.3) provides an infinite
starting creep rate. One can avoid this problem in a timg{sésed numerical pro-
cedure assuming a small non-zero creep equivalent stréle attarting time step.
Finally, both models can be applied only for the case of thestamt or slowly vary-
ing stresses. Transient creep effects under rapid chamdmesding and particularly
in the case of stress reversals cannot be described.

Further details of time and strain hardening models can tedaon [173, 250].
In [173] a modified strain hardening model is proposed basethe idea of creep
strain origins.

2.3.2 Kinematic Hardening

The common approach in describing transient creep effexterucomplex loading
paths is the introduction of internal state variables anat@mriate evolution equa-
tions (the so-called hardening rules). The scalar-valnégtnal state variables are
introduced in the literature to characterize isotropiaeaing and ageing processes.
An example will be discussed in Sect. 2.4.1.3. Several “classical” effects ob-
served in tests under non-proportional loading have miativéhe use of tensor-
valued variables (usually second rank tensors).

The idea of kinematic hardening (translation of the yieldae in the stress
space) originates from the theory of plasticity and has hetaduced by Prager
[257]. In the creep mechanics the kinematic hardening wapgsed by Malinin
and Khadjinsky [203, 204]. The starting point is the adéitdlecomposition of the
stress tensor into two parts:= & + &, whered is called the active or the effective
part of the stress tensor andlenotes the additional or translation part of the stress
tensor (back stress tensor). The introduced tensors caurtheIf decomposed into
spherical and deviatoric parts
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1
6':§tr6'1+§, trs =0,
1
a= gtr al + B, trp=0, (2.3.6)

1
o= g(tr6+tra)1+s, s=5+P

Itis assumed that the inelastic strain rate is determinetidgctive part of the stress
tensor. The creep potential is then a function of the actreqd the stress tensor, i.e.
W =W(o) =W(o —u), e.g. [245]. As in the case of the classical isotropic creep
(Sect. 2.2.1.1) only the second invariant of the deviaisrconsidered. Introducing
the von Mises equivalent stress

_ 3. 3
ToM = \/Es--s: \/E(s—ﬁ)-- (s —B) (2.3.7)
the flow rule (2.1.6) leads to the following constitutive atjan
) e, . 2. .
£ = 5621;5’ Eop = 56” o g (2.3.8)

The equivalent creep rate can be expressed by the use o amdstemperature
functions discussed in Sect. 2.2.3. For example, with tlreepdaw stress function
and the Arrhenius temperature dependence

g = a0y, 4 = dgexp <—%> (2.3.9)

Equations (2.3.8) contain the deviatoric part of the bagssB. This internal state
variable is defined by the evolution equation and the indaidition. In [201, 202]
the following evolution equation is postulated

a2 2 SCT g(‘va)
p=3be St B (2.3.10)

%ME\/%

For the functiong various empirical relations were proposed. One examp0s,|
202]

with

g(apm) = caly, € =coexp (—%)

Equation (2.3.10) is the multi-axial utilization of the Baji-Orowan recovery hy-
pothesis, see Sect. 2.2I8and ¢y are material constants arig,. is the activation
energy of recovery.

Let us show how the model behaves for the uni-axial homogenstress state
o(t) = o(t)n ® n, whereo(t) is the magnitude of the applied stress anis the
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Figure 2.9 Primary and secondary creep stages of a uni-axial creeg curv

unit vector. Withw (0) = 0 one can assume theft) is coaxial with the stress tensor.
Therefore one can write [201, 202]

1 _
a=anQn, ‘B:zx<n®n—§I>, ToM = |0 —a|,  appm = |«]

From Egs (2.3.9) and (2.3.10) follows

¢ =asign(c —a)|c —a|", & =n-¢"-n,

_ (2.3.11)
& = b — csignu|a|”
Let us assume that(t) = oy > 0,(0) = 0,09 —« > 0 and introduce the variable
H = a/0p. From (2.3.11) we obtain

¢ =aoy (1—-H)",

H =0} '[ba(l — H)" — cH"]
The constitutive and evolution Egs (2.3.12) describe tivagny and the secondary
stages of a uni-axial creep curve, Fig. 2.9. In the consitleese of the uni-axial
tension the parametér < H < H, < 1is equal to zero at the beginning of the

creep process and increases over time. In the steadyrétaté,, whereH, is the
saturation value. From the second equation in (2.3.12) edrob

(2.3.12)

1
H, = _, ou=— (2.3.13)
14 un ab
The minimum creep rate in the steady state is calculated by
e, = a0y (1—H.)" =aoy, a=a(l—H,)" (2.3.14)

The constantg andn can be obtained from the experimental data of steady state
creep. For the given value &, the second equation in (2.3.12) can be integrated
providing the duration time of primary creep, (see Fig. 2.9)
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Figure 2.10 Uni-axial creep after unloading. Simulations based on R 15) for the case
n =3 andH, = 0.7. a Creep strain vs. timdy hardening variable vs. time.

H,

_ 9(Hy) _/ dH
pr = bacl ’ o(H.) = / (1—H)" — uH"

From the first equation in (2.3.12) the creep strzﬁfpfollows att = t,, (see Fig.
2.9) as
H,
o 00 (1-H)"dH

sf”‘?o (1—H)" — pH"

The above equations can be used for the identification ofrmabt®nstants.
To discuss the model predictions for the case of the unitaxigic loading let
us introduce the following dimensionless variables

i. i. Ccr
o(t) . £

o= _ = 7 €= 7

where gy denotes the constant stress value in the first loading cfdeations
(2.3.11) take the form

de . | — H|"

g~ s = H) S

dH . . ) 1—H,.\"
T = o(H.) [signte i)l — " —sign(rt) (15 )

(2.3.15)
Figures 2.10 and 2.11 illustrate the results of the numleintegration of (2.3.15)
with n = 3, H, = 0.7 and the initial conditions(0) = 0 andH (0) = 0. In the first
case presented in Fig. 2.10 we assume ¢y within the time interval0, 2t,,], so
that the hardening variable increases up to the saturatiom and remains constant.
The creep curve exhibits both the primary and the secondages, Fig. 2.10b. At
t = 2t,, we assume a spontaneous unloadingyi.e. 0. We observe that the model
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Figure 2.11 Uni-axial creep under cyclic loading. Simulations basedtga (2.3.15) for the
casen = 3 andH. = 0.7. a Creep strain vs. timdy hardening variable vs. time.

4 5 6

(2.3.15) is able to describe the creep recovery (see Fib).1Fgure 2.11 presents
the numerical results for the case of cyclic loading. Thasling cycles with the
constant stressesop and the holding time\t = 2t,,, Fig. 2.11a, are considered.
We observe that the model (2.3.15) predicts identical cresponses for the first
and the third loading cycle.

Let us give some comments on the model predictions undeii-exi#tl stress
states. For this purpose we consider the case that the daesgors is the known
constant tensor within a given interval of tirftg, t|. Equations (2.3.8) and (2.3.10)
can be rewritten as follows

T gf(ﬁvM) (S _ﬁ)/

Po—
2 Oym
_ (2.3.16)
p=1/ (s g sltlg
oM XyM

In the steady creep stafe= B., wherep, is the saturation value of the back stress
deviator. From the second equation in (2.3.16) it follows

pf o) (o gy 8leom) g (2:317)
OoM, XyM.,

o, =\ 36~ B) - 5 B), taws. = /3. B.

The double inner product of (2.3.17) with itself results in

(b (0om.)]? = [g(wom, )]

Sincef (d,pr,) > 0andg(ayy, ) > 0 we obtain

bf(oom,) = §(aom,) (2.3.18)

where
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From (2.3.17) it follows

ﬁ* _ a'I)M*

=———8 =  0OymM, =0 ! 2.3.19
(7-Z)M* T KoM oM. oM T oM. ( )
Now the steady state value of the back stress deviator caaltdated

S
OuvM

B = auu. (2.3.20)

Let us assume power functions fpandg. Then from (2.3.18) it follows

ba(oom — aom, )" = cagpy,

As in the uni-axial case we introduce the hardening variéble- «a;y;/0pp. The
saturation valuéd, is then determined by (2.3.13). From the first Eq. in (2.36)
obtain

5CT n—1

3 -
€y — Eﬂlfvm S, a

We observe that the kinematic hardening model (2.3.16)lteesu the classical
Norton-Bailey-Odqvist constitutive equation of steadigts creep discussed in Sect.
2.2.1. This model predicts isotropic steady state creegpaddently from the initial
condition for the back stress deviafrFurthermore, different stress states leading
to the same value of the von Mises equivalent stress willigdeothe same steady
state value of the equivalent creep rate.

The model (2.3.16) is applied in [202, 245] for the desooiptof creep for dif-
ferent materials under simple or non-proportional loadingditions. It is demon-
strated that the predictions agree with experimental tesddbwever, in many cases
deviations from the Norton-Bailey-Odgvist type steadyestaeep can be observed
in experiments. For example, in the case shown in Fig. 2.6thady state shear
creep rate changes significantly after the shear stresssedsealthough the von
Mises equivalent stress remains constant. The resultemqezsin Fig. 2.7 indicate
that the initial hardening state due to plastic pre-straithe reason for the stress
state dependence of the subsequent creep behavior. Téis edfinnot be described
by the model (2.3.16).

The models with the back stress of the type (2.3.16) are lystemed to be
the models with anisotropic hardening, e.g. [202]. The tgpbanisotropy is then
determined by the symmetry group of the back stress tensdewator. The sym-
metry group of any symmetric second rank tensor includesyswine elements,
e.g. [199]. For the tensg@ the symmetry elements are

a(1— H,)" (2.3.21)

Qﬁ =dn®@nytny; ¥ny £n3dng, (2.3.22)

wheren; are the principal axes. In order to verify the assumed symesedf hard-
ening one should perform creep tests with non-proportitwzaling of the following
type. During the first cycle a homogeneous constant strass sith the deviatoric
parts should be applied over a period of tinf& t,], t; < t,,. During the second



62 2 Constitutive Models of Creep

loading cycle the stress stat€s - s - QiT should be applied, where the orthogonal
tensord); do not belong to the symmetry groupsofAmong all stress states of this
type the stress stat€3g - s - Qg should exist leading to the same (with respect to

the scatter of experimental data) creep response aftedielp.

As shown in [72] kinematic hardening of the type (2.3.16}ket0 a restrictive
form of orthotropic inelastic behavior. In order to demaoatt this let us write down
the back stress deviator in the following form

B = Bini®@n+Pony@ny — (1 + Po)nz @mn3
= Bi(m®@n;—n3@n3) + Pa(ny @ny —nz Qn3),

wherep; andf; are the principal values and, n, andns are the principal direc-
tions of B. For the given back stress deviathe equivalent stress (2.3.7) takes the
form

2 2
02y = 31 1—@) 3?<1—@> E””(l—@) <1—@>
oha = 3 (1-2) waR (1= ) 30k (1-5) (1- 7
+ 3L, +3L4 ., + 311

113 2nz’

(2.3.23)
where the invariant§ are defined by Egs (2.2.53) and the invaridn;,sj are defined
by Egs (2.2.48). Steady state creep with initial orthottagimmetry is discussed in
Sect. 2.2.2. In this case the von Mises type equivalentssiretudes 6 invariants
and 6 independent material constants. The equivalentss{fe3.23) contains all
6 orthotropic invariants. However, the last three termse@hshear stresses with
respect to the three planes of the orthotropic symmetry)nateaffected by the
hardening. Furthermore, in the steady state range thess temish since the back
stress deviatoB. is coaxial with the stress deviator according to (2.3.20).

The possibilities to improve the predictions of the kineimatardening model
are:

— Introduction of additional state variables like isotropiardening variable, e.g.
[87], ageing variable, e.g. [238], or damage variables, [A.@1]. Models with
damage variables will be discussed in Sect. 2.4.

— Formulation of the creep potential as a general isotropiction of two tensorg
anda. Such an approach is proposed in [72] for the case of plastiod includes
different special cases of kinematic hardening,

— Consideration of the initial anisotropy of the material &abr, e.g. [148].

Creep models with kinematic hardening of the type (2.3.8) different specific

forms of the hardening evolution equation are discusseti5f,[159, 202, 238, 245,
272] among others. For the description of creep and cresstipity interaction at

complex loading conditions a variety of unified models isilaide including the

hardening variables as second rank tensors. For detailsfeeto [174, 176, 185,
208]. Several unified models are reviewed and evaluatedti [149]. The historical

background of the development of non-linear kinematic éairty rules is presented
in [87].
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2.4 Tertiary Creep and Creep Damage

Tertiary creep stage is the final part of the creep processulmi-axial creep curve
tertiary creep is observed as the increase of the creepTrageshape of the final
part of the creep curve and the duration of the tertiary cdsgggnds on the material
composition, the stress level and the temperature. For straetural steels, the
tertiary creep is the major part of the whole creep procegs[H05, 242].

The origins of tertiary creep are progressive damage psesesicluding the
formation, growth and coalescence of voids on grain boueslacoarsening of pre-
cipitates and environmental effects. The voids may nueleatlier during the creep
process, possibly at primary creep stage or even afterapeotis deformation. The
initially existing micro-defects have negligible influenon the creep rate. As their
number and size increase with time, they weaken the mafemaiding the de-
crease in the load-bearing capacity. The coalescence itfesagr propagation of
micro-cracks lead to the final fracture. Creep fracture isallg inter-granular [33].
Dyson [99] distinguishes three main categories of creepadg@mthe strain induced
damage, the thermally induced damage and the environrhemeduced damage.
The strain induced damage may be classified as follows [101]

— excessive straining at constant load,
— grain boundary cavitation and
— progressive multiplication of the dislocation substruetu

The first two damage mechanisms occur in all poly-crystalhmaterials, whereas
the third one is essential for nickel-based super-alloys.

The thermally induced damage mechanisms include mateyeah@ processes
which lead to the loss of strength and contribute to the raticle and growth of
cavities. The example of the thermally induced ageing ihetuthe coarsening of
carbide precipitates for ferritic steels (increase of nudufraction of carbide precip-
itates or new precipitation), e.g. [251]. The rate of agalogs not depend on the
applied stress, but is influenced by the temperature andecaiebtified by exposing
test-pieces to thermal environment.

The environmentally induced damage (corrosion, oxidatein.) appears due
to the attack of chemical species contained within the suding medium. The
environmental damage rate can be inversely related to #tgiece (component)
dimensions [99].

The dominance of a creep damage mechanism depends on theaitposi-
tion, on the fabrication route and on the service conditidits several metals and
alloys, fracture mechanism maps are available [33]. ByagyalWith the deforma-
tion mechanism maps, regions with different fracture madesndicated depending
on the stress and the temperature ranges.

Physical modeling of creep damage is complicated by thetfiattmany differ-
ent mechanisms may operate and interact in a specific matadar given loading
conditions. This interaction should be taken into accoaorthe damage rate equa-
tions. Models related to the grain boundary cavitation @&eussed and reviewed in
[155, 271].
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The characterization of tertiary creep under multi-axte¢ss states is the im-
portant step in a creep analysis of engineering structéréetime prediction of a
specific load bearing component designed for creep, or duasiifetime estima-
tion of a structure operating at elevated temperature resja model which takes
into account tertiary creep and damage evolution underifaxitl stress states.

The damage rate and consequently the creep rate are degdrinirthe stress
level, the accumulated damage and the temperature. Thpsadincies can be es-
tablished based on experimental data from the uni-axiajctesting. If the material
is subjected to multi-axial loading, the kind of stressestads a significant influence
on the damage growth. Tension and compression lead toatiffereep rates. Dif-
ferent stress states corresponding to the same von Miséskm stress lead, in
general, to different equivalent tertiary creep rates athike equivalent strain rate in
the secondary stage is approximately the same. These faastablished from the
data of creep tests under combined tension and torsion[169, 170], as well as
from biaxial and triaxial creep tests [282, 283]. Stresgestdfects must be consid-
ered in the damage evolution equation. In Sect. 2.4.1 weisksearious possibilities
to characterize the tertiary creep behavior by means oéswalued damage para-
meters. Under non-proportional loading conditions, theitamhal factor is the in-
fluence of the damage induced anisotropy. Examples are @sspunder combined
tension and alternating torsion, e.g. [218], and creep tesder biaxial loading with
alternating direction of the first principal stress [283]bdoth cases the assumption
of isotropic creep behavior and the scalar measure of daieadeo disagreement
with experimental observations. In Sect. 2.4.2 we reviemeexperimental results
illustrating the damage induced anisotropy and discusspetdamage models with
tensor-valued damage variables.

2.4.1 Scalar-Valued Damage Variables

Many microstructural observations show the directiongdatfof creep damage. For
example, during a cyclic torsion test on copper voids nuelead grow predomi-
nantly on those grain boundaries, which are perpendicaléné first principal di-
rection of the stress tensor, e.g. [134]. Creep damage kasfoine an anisotropic
nature and should be characterized by a tensor. Howevde iinitially isotropic
material is subjected to constant or monotonic loading tifleeénce of the damage
anisotropy on the observed creep behavior, i.e. the stgitiwe curves, is not sig-
nificant. If the state of damage is characterized by a teisser $ect. 2.4.2) then such
a tensor can be assumed to be coaxial with the stress terggrmonotonic loading
conditions. In such a case only the scalar damage measufrestsr the creep con-
stitutive equation. Below we introduce different modeldatiary creep including
the phenomenological, the so-called micromechanicalhsisbent and mechanism
based models. The effect of damage is described by meanalaf selued damage
parameters and corresponding evolution equations. Thess#tate influences are
expressed in the equivalent stress responsible for thegiamalution.

2.4.1.1 Kachanov-Rabotnov Model. The phenomenological creep-damage
equations were firstly proposed by L. Kachanov [150] and Raho[263]. A new
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internal variable has been introduced to characterize ¢betinuity” or the “dam-
age” of the material. The geometrical interpretation ofdbetinuity variable starts
from changes in the cross-section area of a uni-axial spETi®pecifying the initial
cross-section area of a specimendyand the area of voids, cavities, micro-cracks,
etc. byAp, the Kachanov's continuity is defined as follows (see [152])

_Ap—Ap
ll)_ AO

The valueyp = 1 means the virgin, fully undamaged state, the conditjor= 0
corresponds to the fracture (completely damaged crogmisic

Rabotnov [263, 264, 265] introduced the dual damage variablin [264] he
pointed out that the damage state variablémay be associated with the area frac-
tion of cracks, but such an interpretation is connected witbugh scheme and is
therefore not necessary”. Rabotnov assumed that the catefsradditionally de-
pendent on the current damage state. The constitutiveiequgiould have the form

s-cr — S'CV(O',CL))
Furthermore, the damage processes can be reflected in thé@vequation
w=w(o,w), wli==0 w<ws,

wherew, is the critical value of the damage parameter for which theens fails.
With the power functions of stress and damage the consgt@quation may be
formulated as follows

CT ac”
S 24.1
S T (2.4.1)
Similarly, the damage rate can be expressed by
bok
V)= ——— 2.4.2

These equations contain the material dependent constahts:, m, [, k. It is easy
to prove that for the damage free state & 0), the first equation results in the
power law creep constitutive equation.

Settingm = n the first equation can be written as

¢’ = ad", (2.4.3)
whered = o/(1 — w) is the so-called net-stress or effective stress. In thie cas
(2.4.3) is a generalization of the Norton-Bailey secondaegep law for the descrip-
tion of tertiary creep process. Lemaitre and Chaboche [p8&30sed the effective
stress concept to formulate constitutive equations foratged materials based on
available constitutive equation for “virgin” materialsnAnterpretation can be given
for a tension bar, Fig. 2.12. Herl) denotes the initial cross-section area of the bar,
Fig. 2.12a. From the given tensile forEdhe stress can be computedvas- F/ Ag.
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F=0A F=0A

Figure 2.12 Strain and damage of a barlnitial state,b damaged state, fictitious undam-
aged state

The axial strain for the loaded bar= (I —1y)/ly can be expressed as a func-
tion of the stress and the actual damage f(c,w), Fig. 2.12b. For the effective
cross-sectiod = Ay — Ap the effective stress is

. F 0
T AT 1w
Now a fictitious undamaged bar with a cross-section atedig. 2.12c, having
the same axial strain response as the actual damaged=baf(d) = f(o, w) is
introduced. The strain equivalence principle [183] st#tes any strain constitutive
equation for a damaged material may be derived in the sameawdgr a virgin
material except that the usual stress is replaced by thetigfestress. Thus the
constitutive equation for the creep rate (2.4.3) is the pdaw generalized for a
damaged material.
Let us estimate the material constants in the model

k
S
(1-w)

based on uni-axial creep curves, Fig. 2.13. Setiing 0 the first equation yields the

minimum creep rate. The material constantmdn can be determined from steady
state creep. Let”. . andé . , be minimum creep rates at the constant stresges
ando», respectively. Then the material constants can be estihfiaim

o ecr scr scr
_ 08 (& /i) Eimt _ i (2.4.6)

log(oy /o)~ = of ol

(2.4.4)

(2.4.5)
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Figure 2.13 Phenomenological description of uni-axial creep curves

For a constant stressthe second equation (2.4.5) can be integrated as follows

Wi

ty
/(1—w)ldw - /bakdt
0

0

with ¢, as time to fracture of the specimen. Setting the critical agenvaluev, = 1

we obtain ,

(I +1)bo*
This equation describes the failure time - applied strelsdioa. For a number of
metals and alloys the experimental data of the long-terength can be approxi-
mated by a straight line in a double logarithmic scale. Nthtat such an approxi-
mation is valid only for a specific stress range, Fig. 2.14hmspecial cask = [

the material constanfsandb may be estimated from the long-term strength curve
as follows

t = (2.4.7)

. log(t*z/t*l) 1 1
Clog(oi/on) " tg(k+ 1)k ta(k+1)0k

with t,q, t,» as failure times corresponding to the applied stressemdo,. Inte-
gration of the second Eq. (2.4.5) with respect to time by dig6q00(2.4.7) provides

w(t):1—<1—£>1+11
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Figure 2.14 Long-term strength curve

After integration of the creep rate equation (2.4.5) witk- const we obtain

er(p) — ga’n*k 1 1 t Hlilk;n
OBl iy Ll E

The creep strain{ at timet, (fracture strain) can be calculated as

o {,Z(Tnfk
&) = a1

If k > n then the fracture strain is a decreasing function of strElss is usually
observed in the case of moderate stresses.

The phenomenological model (2.4.5) characterizes theteffedamage evolu-
tion and describes the tertiary creep in a uni-axial testaHmumber of metals and
alloys material constants are available, see e.g. [18,89,32, 141, 142, 143, 144,
163, 169, 184, 185, 216]. Instead of the power law functidrsdress or damage itis
possible to use another kind of functions, e.g. the hypérisihe functions in both
the creep and damage evolution equations. In addition, déyntnoduction of suit-
able hardening functions or internal hardening varialitessmodel can be extended
to consider primary creep.

In applying (2.4.5) to the analysis of structures one shbelar in mind that the
material constants are estimated from experimental creees, usually available
for a narrow range of stresses. The linear dependenciegbelug ¢/, andlog
or betweenlogt, andlogc do not hold for wide stress ranges. For example, it is
known from materials science that for higher stresses thieada mode may change
from inter-granular to transgranular, e.g. [33]. Alteivelly, tertiary creep can be
described by the introduction of several internal variabMhich are responsible
for different interacting damage mechanisms. Exampless@mh models will be
discussed later.
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The model (2.4.5) is a system of two ordinary differential&ipns, which must
be integrated over time in order to obtain the current créignsand damage. For
the analysis of statically indeterminate structures thegiration must be performed
numerically, even in the case of a uni-axial stress statsoine cases the effect of
tertiary creep rate does not lead to significant stresstrémigon and one can ne-
glect the damage variable in the constitutive equation.12.4.9. [276]. The dam-
age evolution equation can be integrated separately pnoyvithe time to fracture
estimation for the given constant stress in the steadg-staep range.

To discuss multi-axial versions of (2.4.1) and (2.4.2) kehaglect primary creep
effects and assume the von Mises type secondary creep ahaexdel introduced

in Sect. 2.2.1 3
. s
& = EaUgM -

(2.4.8)

Rabotnov [264] assumed that the the creep potential for aheaded material has
the same form as for the secondary creep. His propositiontveamtroduction of
an effective stress tensér= f (o, w). For the case of distinct principal values of
the stress tenser; > o7 > oy andop > 0 the following expression is suggested
[264]

~ oy
0= 1M en oy @ny+omi @ n

If we apply the strain equivalence principle [185] than tlmmstitutive equation
(2.4.8) can be modified by replacing the stress teasaith the effective one. As-
suming the effective stress tensor in the fatm= o /(1 — w), the constitutive

equation (2.4.8) can be generalized as follows [182]

3 o, " s
T oM
= — 2.4.9
£ 2”(1—w> ot (2:4.9)

The next step is the formulation of the damage evolution &guaBy analogy with
the uni-axial case, the damage rate should have a form

w=w(o,w)

The dependence on the stress tensor can be expressed by ohélamsdamage
equivalent stress’&e‘*gl(cf) which allows to compare tertiary creep and long term
strength under different stress states. With the damagiwadet stress, the uni-
axial equation (2.4.2) can be generalized as follows
b(og)

=] (2.4.10)

W=
The material constants b, 11, k and! can be identified from uni-axial creep curves.
In order to find a suitable expression for the damage equit/ateess, the data from
multi-axial creep tests up to rupture are required. In @neg[] can be formulated
in terms of three invariants of the stress tensor, for exarti@ basic invariants (see
Sect. 2.2.1)
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eg = egl11(0), I2(0), I3(0)]

Similarly to the uni-axial case, see Eq. (2.4.7), the damagw@ution equation
(2.4.10) can be integrated assuming that the stress tessocanstant function of
time. As a result, the relationship between the time to cfesgiure and the equiv-
alent stress can be obtained
1
t, = m(agj])*k (2.4.11)

Sdobyrev [288] carried out long-term tests on tubular speois made from alloys
El-237B (Ni-based alloy) and EI-405 (Fe-based alloy) uneesion, torsion and
combined tension-torsion. The results of the tests are sarmed for different tem-
peratures with the help of equivalent stress vs. fractune fplots. The following
dependence was established

%(‘TI +oom) = f(logts) (2.4.12)
He found that the linear functiofi provides a satisfactory description of the ex-
perimental results. The equivalent stress responsiblégdang term strength at
elevated temperatures is theg = %(U] + o,Mm). Based on different mechanisms
which control creep failure, the influence of three streategbarameters (the mean
stressoy, = I /3, the first positive principal stress or the maximum tensifess
omaxt = (07 + |07])/2 and the von Mises stress) is discussed by Trunin in [314].
The Sdobyrev criterion was extended as follows

1 30,

o == (oypm + 0, al =2 =" 2.4.13
“ 2 ( oM maxt) 1 OoM + Omaxt ( )

wherea is a material constant. For special loading cases this alguivstress yields

— uni-axial tension

— uni-axial compression
B3
Ueqg = T n=-1

— pure torsion

o V3+1
eq — 2
The constant can be calculated from the ultimate stress values leaditigeteame

fracture time for a given temperature. For example, if thienalte tension and shear
stresses are, andt,, respectively, then

Ta, n=0

M
V341




2.4 Tertiary Creep and Creep Damage 71

Hayhurst [132] proposed the following relationship
by = A(“Umaxt + BL + ’)’UUM)ixr (2.4.14)

where A and y are material constant$, = 30, anda + B + v = 1. Comparing
this equation with Eqg. (2.4.11) one can obtain

1
A= m, X = k, 0'5;] = KOmaxt + ‘Bll + YOoM (2415)
Hayhurst introduced the normalized stress te@sor o /oy and the normalized
time to fracturet, = t./t.o, Wheret,q is the time to fracture in a uni-axial test
conducted at the stresg. From Eqgs (2.4.7) and (2.4.11) it follows

—k

E o= <§> = (o)~

0o

By setting the normalized rupture time equal to unity, theahpn(fg; = 1 follows,
which is connecting the stress states leading to the eqpélinaitime. In [132]
the data of biaxial tests (biaxial tension test, combinegita and torsion of tubu-
lar specimens) for different materials are summarized.al$ found convenient to
present the results in terms of the isochronous ruptur@aseirfvhich is the plot of
the equation'f;;; = 1 for the specified values of and$ in the normalized stress
space. For plane stress states the isochronous rupturedlodie presented in the
normalized principal stress axes. Examples for differeatemials are presented in
[132]. The coefficients andp are specific for each material and, in addition, they
may depend on the temperature. Figure 2.15 shows the ismlsaupture loci for
three special cases;;; = Omaxt, (7;;; = OyM anda«;g = 30,,. The first two represent
the extremes of the material behavior [182].

A more general expression for the damage equivalent stegsbe formulated
by the use of three invariants of the stress tensor. With theifivariant/;, the von
Mises equivalent stress,,; and

, 27 (s-s) s T T
=22 2 _D<cEr< )
Sin ¢ 2 oum 6 =6= 6

as a cubic invariant, the following equivalent stress hanl@oposed in [27]

(7'2; = Moypmsing + Axopn cos € + Asoppm + Aglh + Aslisiné + Agly cos ¢
(2.4.16)
The identification of coefficientd;, i = 1,...,6 requires six independent tests.
Equation (2.4.16) contains a number of known failure aaters special cases, see
[27]. For example, setting; = A, = Ay = A5 = A¢ = 0 the equation provides
the von Mises equivalent stress. Taking into account

1 . 27 1 . 3 1
o = 3 |:ZUUM sin <§+ ?> + 11] = —g%M sin¢ + gtva cos¢ + 511
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Figure 2.15 Plane stress isochronous rupture loci, for details se€ [132

and with

one can obtairg; = 5 (o7 + o). With

M= —ia Azzﬁa, As = B, A4:1—§a

: 8 —B, As=Ag=0

Eq. (2.4.16) yieldsry = aop + Boom + (1 — a — B)I1. Other examples are dis-
cussed in [3].

In order to identify the material constants, e.g.in (2.4.13) ora and g in
(2.4.14), the values of the ultimate stresses leading tcséimee failure time for
different stress states are necessary. Therefore seriedagfendent creep tests up
to rupture are required. For each kind of the test the long &rength curve (stress
vs. time to fracture curve), see Fig. 2.14, must be obtaiRed.example, a series
of torsion tests (at least two) under different stress vakigould be performed.
Usually, experimental data from creep tests under comptessstates are limited
and the scatter of the experimental results is unavoidailerefore, the constitu-
tive and the evolution equation (2.4.9) and (2.4.10) with tivo-parametric dam-
age equivalent stress (2.4.15) are widely used in modediriaty creep. Examples
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of material constants as well as structural mechanics egiins can be found in
[18, 69, 77,132, 142, 143, 144, 163, 169] among others.

2.4.1.2 Micromechanically-Consistent Models. The creep constitutive
equation (2.4.9) includes the effect of damage by meanseoktjuivalent stress
concept. An alternative approach to formulate the creestitative equation can
be based on micromechanics. Rodin and Parks [277] condidarénfinite block
from incompressible isotropic material containing a gidéstribution of cracks and
subjected to a far field homogeneous stress. As a measurarziggathey used
p = a®N/V, whereN is the number of cracks (voids) in a volurireanda is the
averaged radius of a crack. Assuming power law creep, thaydfdhat the creep
potential for such a material has the following form

€000 ToMm n+1
W(e,p,n) = <¢r,,> 0 , 2.4.17
@,pm) = 20 £ (¢l0) ) (22 (2.417)
where¢ is the reference creep rai®, is the reference stress ands a material
constant{ (o) is a function representing the influence of the kind of stetate. In
[277] the following particular expression is proposed

o1

(o) = —,

OuvM

wherecy is the maximum principal stress. The creep potential (Z)4ahd the flow
rule (2.1.6) give

W _ OW oo | WA
o0 Jdoyy OO o7 do
n
(o[B8, Cfz ) s fz
N 80<ao> [2<f n+1 UUM+n+1nI®nI ’
wheren; is the first principal direction of the stress tensor. Thecfiom f must
satisfy the following convexity condition [277]

ffe— fz>0,

The form of the functionf is established for the assumed particular distribution of
cracks and by use of a self-consistent approach. In [278ptleeving expression is
proposed

8'CV

(2.4.18)

n
n+1

n+1

2

f@Gom) = [1+a(pm] *
20 (2n+3)p*>  (n+3)p° (n+3)p*
n+1 nn+1)2  9Inn+1)3  108n(n+1)*

a(o,n) =

Models of the type (2.4.18) are popular in materials scieratated literature,
e.g. [121, 211]. They are based on micromechanical coradides and therefore
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seem to be more preferable for creep-damage analysis. owavy idealized

damage states, e.g. dilute non-interacting cracks or witls a given density

and specific distribution can be considered. Furthermargresent there is no
micromechanically-consistent way to establish the fornthef evolution equation
for the assumed damage variable. Different empirical égusiare proposed in the
literature. For example, Mohrmann and Sester [211] asshatettie cavity nucle-

ation is strain controlled and recommend the following diqua

»
A
Pf <W>

wherepy, e and-y are material constants which should be identified from “macr
Scopic” creep responses.

Bassani and Hawk [36] proposed to use a phenomenologicagaparameter
w (see Sect. 2.4.1.1) instead@fThe functionf is then postulated as follows

n+1

2

f(g,w,n) = m <1 — aow + zxowgz) (2.4.19)
Here oy oh
g = (1 — Dél)UUM —|—(X100M

andk, n, ag andaq are material constants. From Eqgs (2.4.18) and (2.4.19visl|

n
1 .
= o () e et 7
0 sw (2.4.20)
X {E(l—rxow)aM+txow§[(1—¢x1)n1®n1+tx11]}
v

With oy = 1 andk = n (2.4.20) yields the Kachanov-Rabotnov type constitutive
equation (2.4.9). By settingg = 1, k = (n+1)/2 andw < 1 Eq. (2.4.20)
approximates the Rodin and Parks micro-mechanical baselIni@77]. For the
casek = n, ap = 1 andaq = 1 the constitutive equation for the creep rate can be
presented as follows

n—1 3 S
T 21—
y(1—w —

é“:%[—ﬂﬂ—ﬂna—w+wé) + wil

0’0(1 —w

From Eq. (2.4.20) one can calculate the volumetric creap rat

n
¢y = tr &7 = 20 <U;é\/l> (1 —1w)k (1 — Kow + Oéoa)gz)nT_l [Déo&]é(l + 20(1)]
We observe that the damage growth induces dilatation. Greestitutive equations
(2.4.18) or (2.4.20) include the first principal dyad of thess tensor. It should be
noted that the dyad; ® n; can be found only itr; £ 0, 07 # o7 andoy # oyp;.

In this case, e.g. [199]
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1
(UI - UH)(UI —Um)

Inserting (2.4.21) into (2.4.18) or into (2.4.20) we obsetvat not only the volumet-
ric strain but also second order effects (see Sect. 2.2digoussion) are “induced”
by damage.

2.4.1.3 Mechanism-Based Models. The constitutive and evolution equations
(2.4.9) and (2.4.10) are formulated in terms of power lawcfioms of stress. It
is known from materials science that the power law creep ingdarantees the
correct description only for a specific stress range (seéB2@). In addition, the
power law stress and damage functions used in Egs. (2.4d9pah10) may lead to
numerical problems in finite element simulations of creeptiactures with stress
concentrations or in attempts to predict the creep cracktirfil92, 281].

The uni-axial creep tests are usually performed under &se stress and tem-
perature levels in order to accelerate the creep processh&dong term analysis
of structures the material model should be able to predegtrates for wide stress
ranges including moderate and small stresses. Within therra science many
different damage mechanisms which may operate dependitfteasiress level and
the temperature are discussed, e.g., [99]. Each of the damaghanisms can be
considered by a state variable with an appropriate kingticgon.

Another way for the formulation of a creep-damage constguimodel is the
so-called mechanism-based approach. The internal statbhs are introduced
according to those creep and damage mechanisms which denfaraa specific
material and specific loading conditions. Furthermordediit functions of stress
and temperature proposed in materials science can beedtilizhe form and the
validity frame of such a function depend on many factorsudirig the stress and
temperature levels, type of alloying, grain size, etc. Tlaemals science formula-
tions do not provide the values of material constants (dméykiounds are given).
They must be identified from the data of standard tests, aigaxial creep test.
Examples of mechanism-based models can be found in [133,1734 243, 251].
Here we discuss the model proposed by Perrin and Hayhur&6it] for a 0.5Cr-
0.5Mo0-0.25V ferritic steel in the temperature range 600 5°€7

The starting point is the assumption that the rate of thel lgein boundary
deformation is approximately a constant fraction of theralleeformation rate.
From this follows that the constitutive equations for them creep rate can be
formulated in terms of empirical relationships between ltieal grain boundary
deformation rate and the stress, the temperature, theatiawnitrate, etc.

For ferritic steels the nucleation of cavities has beenmieskat carbide particles
on grain boundaries due to the local accumulation of disioes. The nucleation
kinetics can be therefore related to the local deformattamthermore, the cavity
nucleation depends on the stress state characterized/ by,,. Cane [83] observed
that the area fraction of intergranular cavities in the plaormal to the applied
stress increases uniformly with the accumulated creemstig proposed that the
nucleation and growth can be combined into an overall measiucavitation. The
cavitated area fractior s can be related to the von Mises equivalent creep strain,

deto

nyen = 0> — (tro—o7)o + I (2.4.21)
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the von Mises equivalent stress and the maximum principassty the equation

Af = De (”I >H (2.4.22)
f oM U'UM ’ T
whereD andyu are constants depending on the material microstructureinRend
Hayhurst define the damage state variablas the cavitated area fraction. The fail-
ure condition in a uni-axial creep test is the complete e#aih of all grain bound-
aries normal to the applied stress. The cavitated areadnaof such cavities at
failure is approximatelyt /3. Therefore, the critical state at which the material fails,
can be characterized by, = 1/3.

The important mechanism of creep damage for the ferritiel steder consid-
eration is the temperature dependent coarsening of capbet@pitates. First, the
carbide precipitates restrict the deformation of the gmafarior and second, they
provide sites for nucleation of cavities. Following Dys@®], the particle coars-
ening can be characterized by the state varighbte 1 — I;/] related to the initial
(1;) and curren{]) spacing of precipitates. The kinetic equation is derivedithe
coarsening theory [99, 101]

¢ = (%) (1—¢)* (2.4.23)

with K, as the material dependent constant for a given temperdtheerate of the
coarsening variable is independent from the applied s@adscan be integrated
with respect to time. The primary creep is characterizechbywork hardening due
to the formation of the dislocation substructure. For thiggpse a scalar hardening
state variableH is introduced. This variable varies from zero to a saturatialue
H., at which no further hardening takes place. The proposeldittamo equation is

o heEdT, H
H=—M(1_-~ 2.4.24
OuM < H*) ( )

with k. as the material constant.

The creep rate is controlled by the climb plus glide deforamatechanism. For
the stress dependence of the creep rate, the hyperbolistsgss function is used.
The materials science arguments for the use of hyperbale fsinction instead of
power law function are discussed, for example, by Dyson andddn [102]. With
the assumed mechanisms of hardening, cavitation and agedhtiie corresponding
state variables the following equation for the von Misepreate is proposed

BUUM<1 _ H)
(1-¢)(1-w)

The previous equations are formulated with respect to a tieegberature. The in-
fluence of the temperature on the processes of creep defonneteep cavitation
and coarsening can be expressed by Arrhenius functionsapiphopriate activa-
tion energies. Further details of the physical motivatiomdiscussed in [251]. The
following set of constitutive and evolution equations hasibproposed

¢, = Asinh (2.4.25)
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cr _§ s A sinh Boym(1 — H)
20um 1-¢)1-w)’
el (1)
oM H. ’

(2.4.26)

whereN = 1 foro; > 0 andN = 0 for o7 < 0. Ao, By, Do, K¢y, he, Hy, Qa, O,
Qp andQg, are material constants which must be identified from unalasieep
tests. The material constant the so-called stress state index, can be determined
from multi-axial creep rupture data. These constants amtiiied in [251] based on
the experimental data of uni-axial creep over the stresgerafi28 — 110 MPa and
over the temperature range ®@f5 — 690° C. In [252] Eqgs (2.4.26) are applied to
model creep in different zones of a weldment4d° C including the weld metal,
the heat affected zone and the parent material.

It should be noted that Eqs (2.4.26) are specific for the densd material and
can only be applied with respect to the dominant mechanigithe@wreep deforma-
tion and damage evolution. Further examples of mechanisadoaaterial models
are presented in [244] for a nickel-based super-alloy and7f] for an aluminium
alloy.

2.4.1.4 Models Based on Dissipation.  Sosnin [296, 297] proposed to charac-
terize the material damage by the specific dissipation wilk. following damage

variable has been introduced
t

qg= /aé”dT (2.4.27)
0
For the variabley the evolution equation was postulated

= fo(@)f1(T) fq(q)

For the multi-axial stress and strain states this variabtiefined as follows
t
q= / o--¢7dt
0

In [297] Sosnin presented experimental data for varioaititm and aluminium
alloys in a form ofg vs. time curves. He found that a critical valge exists at
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which the material fails under creep conditions. The vajueloes not depend on
the kind of applied stress and can be considered as a matensiant.
For isotropic materials the creep rate equation can be fiateul as follows (see
Sect. 2.2.1) .
aCr 3 P ACT ~CT
& =-—=s8, P=0-& =0oymé,my (2.4.28)
2 OuoM
Sosnin assumed the dissipation poweo be a function of the von Mises equivalent
stress, the temperature and the internal state variedefollows

§ =P = fo(oom) fr(T)fy(q)

In many cases the following empirical equation providestesfeatory agreement
with experimental results

n
ball

, (2.4.29)
gk (qitt — gktym

q':

whereb, n, k, m andg, are material constants. In [297] experimental data obthine
from uni-axial tests and tests on tubular specimens undebowd tension and
torsion are presented. Particularly the results of combteasion and torsion tests
show that the;y versust curves do not depend on the kind of the stress state. The
material constants are identified for titanium alloys OB4;5 and BT-9, for the
aluminium alloy D16T and for the steel 45. In [28] the Sossidissipation damage
measure is applied to the description of creep-damage ditdréum alloy OT-4
and the aluminium alloy D16T considering stress state tsffé [341]Zyczkowski
calculated the dissipation powerstarting from the Kachanov-Rabotnov constitu-
tive equation (2.4.9). He found that for a class of mateiiids possible to express
the damage evolution equation (2.4.10) in terms of the ph$igin power. He con-
cluded that this approach allows to reduce the number ofiahtmnstants to be
determined from creep tests.

2.4.2 Damage-Induced Anisotropy

The dominant damage mechanism for many materials is theatimh and growth
of cavities and formation of micro-cracks. Cavities nutdean grain boundaries
having different orientations. At the last stage beforeepraupture the coalescence
of cavities and the formation of oriented micro-cracks iseved. The direction of
the orientation depends on the material microstructureoarttie kind of the applied
stress. For example, micrographs of copper specimensl t@stker torsion show that
the micro-cracks dominantly occur on the grain boundariessg normals coincide
with the direction of the maximum positive principal strg¢$84, 136, 212]. The
strongly oriented micro-cracks may induce anisotropiepnesponses particularly
at the last stage of the creep process. Creep responses afigtenitic steel X8
CrNiMoNb 1616 and the ferritic steel 13 CrMo 4 4 are experitaiy studied in
[63, 105] with respect to different loading orientationggu¥e 2.16 schematically
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Figure 2.16 Uni-axial creep tests with different orientations of thadong directiona Creep
curve for a flat specimen and creep curves for small speciaesdifferent prestraining,
b creep curves for different loading directions after praising of0.75¢5" (after [63, 105])

presents the results of testing. Uni-axial creep tests wanéed out on flat speci-
mens at different stress and temperature levels. In ordestablish the influence of
the creep history (pre-loading and pre-damage), serieatadgkecimens were tested
up to different values of the creep strain. The values of tkeg pre-straining were
e = 0.25¢;0.5¢;0.75¢5, wheree? is the creep strain at fracture. After unload-
ing, small specimens were manufactured from the pre-stiaflat specimens with
different orientation to the loading axis, Fig. 2.16b. The-axial tests performed
on the small specimens show that the creep responses depehd angle of the
orientationd. In [105] it is demonstrated that for small specimens praiséd up
to 0.25¢S" the creep response is not sensitive to the afglEhe significant depen-
dence of the creep curves and the fracture times on the @rgds been observed
for specimens pre-strained upag’5eS.

In [218] creep tests were carried out on thin-walled coppees$ under com-
bined tension and torsion. The loading history and the cregponses are schemat-
ically presented in Fig. 2.17. During the first cycle the spens were preloaded by
constant normal and shear stresses within the time int@hval. In the second cy-
cle from¢#; up to creep rupture the specimens were loaded under the sarsiict
normal stress but the reversed constant shear stressrébe state after the reversal
is characterized by the change of the principal directidhg.angle between the first
principal direction in the reference state and after thensal can be controlled by
the values of the normal and the shear stresses. Creep sesgon different angles
are discussed in [218]. It is demonstrated that the creepaga model with a scalar
damage parameter, see Sect. 2.4.1, is not able to predictabe behavior after the
shear stress reversal. Particularly, it significantly wagiémates the fracture time in
all loading cases. Similar results are discussed in [218¢&an tests on Nimonic
80A.
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Figure 2.17 Creep tests at combined tension and torsahoading history,b creep re-
sponses (after [218])

The introduced examples of experimental observationsa@teithat the creep
rate and the lifetime of a specimen additionally depend erotiientation of micro-
defects with respect to the principal axes of the stresote@ne way to consider
such a dependence is the use of a tensor-valued damage paEralngecond rank
damage tensor was firstly introduced by Vakulenko and M. idaok [316] for
the description of elastic-brittle damage. The first attetopuse a tensor-valued
damage parameter in creep mechanics is due to Murakami and Rmh5, 217].
They considered a characteristic voluvien the material havingN wedge cracks
and specified the area of the grain boundary occupied bithherack bydA’é‘,. They
assumed that the state of damage can be characterized lmjithérfg second rank
symmetric tensor

3 N

0= Y, [imt @ m* k(1 - mt mb)]aal, (2.4.30)
%4

A(V) (3

wherem! is the unit normal vector to theth crack andA¢ (V) is the total area of
all grain boundaries ifV. w* characterizes the effect of tieh crack on the area
reduction in the planes whose normals are perpendicutaf tSpecifying the three
principal values of2 by (2;, j = 1,2,3, and the corresponding principal directions
by the unit vectors:; the damage tensor can be formulated in the spectral form

3
0= Z Q]n] Qn; (2.4.31)
j=1
The principal values of the damage tenérare related to the cavity area fractions

in three orthogonal planes with the unit normats; . The cases2; = 0 and
(2; = 1 correspond to the undamaged state and the creep-rupture jihtplane,
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respectively. By analogy with the uni-axial bar (see Fig22 Murakami and Ohno
introduced a fictitious undamaged configuration in a solidniBans of effective
infinitesimal area elements. From three orthogonal plaaeib the unit normals
—n; aninfinitesimal tetrahedron is constructed with area efemedi;d A; andiid A
so that

(2.4.32)

With Q]n] :n]--.() :.Q.n]-
fdA = (I -Q)-ndA (2.4.33)

The stress vector acting in the plane with the unit nomnedn be specified hy(n).
The resultant force vector acting in the plah# is

dAG ) = dAn-0 =dAi-(I1-Q) ' -0c=dAn-6, 6=(1-0Q) "0,
(2.4.34)
wheregd is the effective stress tensor. Introducing the so-calladabe effect tensor
@ = (I - Q) ! one can write
c=o.0 (2.4.35)

According to the strain equivalence principle [185], thesttutive equation for the
virgin material, for example the constitutive equation fioe secondary creep, can
be generalized to the damaged material replacing the Casidgs tensar by the
net stress tensa@r. The net stress tensor (2.4.35) is non-symmetric. Intrioduihe
symmetric part

5 = %(U-GH—CID-U) (2.4.36)
the secondary creep equation (2.4.8) is generalized asv®[219]

3 1 3
- Eaaggdlés, § =0 -0l Gom = /58 & (2.4.37)

é
The rate of the damage tensor is postulated as a functiore sttess tensor and the
current damage state. The following evolution equatiorrappsed in [218] for the
description of creep damage of copper

Q = b[ad; + (1 — )55, (n] - @-n9)'nf @nJ, (2.4.38)

whereb, a, k and! are material constants and the unit veatrdenotes the di-
rection corresponding to the first positive principal sdrés The constitutive and
evolution equations (2.4.37) and (2.4.38) have been aplif219] for the descrip-
tion of creep-damage behavior of Nimonic 80A. The second damage tensor
(2.4.31) and the net stress (2.4.36) have been used in [2t8Me\Vetty-type creep
equations for the prediction of creep-damage of copper.rébelts show that the
model with the damage tensor provides better agreementexjirimental data if
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compared to the model with a scalar damage parameter, se2.Frg In [217] the
following damage evolution equation is utilized

€2 = (a5} + B + (1 —a — By (tr @) 72 [y1 + (1 —p)nf @],
(2.4.39)
wherep andy are material constants. This equation takes into accoernbtluence
of the mean stress on the damage rate. Furthermore, thegsoprart of the damage
tensor associated with the growth of voids is included.

To discuss the damage tensor (2.4.31) let us consider aiatiFomogeneous
stress state = oym @ m with oy > 0 andm = const. Let us specify2 = 0 as the
initial condition. The evolution equation (2.4.38) takhe form

Q) =witmeom, w= L w(0) =0 (2.4.40)

- ¢ T (1 — w)kH - o

The equation for the scalar can be integrated as shown in Sect. 2.4.1. As a result
one can find the relation between the time to fracture andtteessy. Based on
this relation and experimental data one can estimate thesalf material constants
b, k and! (Sect. 2.4.1). According to the introduced damage mealue3(l) the
damage stat® = wm ® m corresponds to the case of uniformly distributed penny-
shaped cracks (circular planes) with the unit normals

Now let us assume that the damage sfte= wom @m, 0 < wy < 1is
induced as a result of the constant stress- cym @ m exerted over a period of
time and in the next loading cycle= opp @ p, p- m = 0. In this case the solution
of (2.4.38) can be written down as follows

ba{)‘
(T —wn’

The model predicts that in the second cycle the materialveshike a virgin un-
damaged material. The corresponding time to fracture doedapend on the initial
damageuvy. The rate of nucleation and growth of new voids (cracks) enplanes
orthogonal tg will not be affected by cracks formed in the first loading eydfur-
thermore, if a compressive stress oe= —oyp ® p is applied in the second cycle
the model predicts no damage accumulation.

Let us note that the evolution equations (2.4.38) and (2)4&8n only be applied
if o1 # 0,07 # &7 andy # 7y In this case the dyae? @ n9 can be found from
the identity (2.4.21). For the stress states- gl oroc = ap Qp +b(I —p @ p),

a < b, there is an infinite number of first principal directionscBistress states are
typical for several structural components. For example,stiness state of the type
oc=ap®p+b(I—p®p) arises in the midpoint of a transversely loaded square
plate with all for edges to be fixed (e.g. supported or clamgugks), [13]. In the
loaded (top) surface of such a pldte< a < 0 while in the bottom surfacé > a,

a < 0,b > 0. Stress states of the same type arise in different rotdljosEammetric
problems of structural mechanics. For analysis of suchlenad a modified form of
the evolution equation (2.4.39) is required [119].

Q) =wmdm+w (Hpp, @ = w1(0) =0 (2.4.41)
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Various forms of creep-damage constitutive equations settond rank damage
tensors have been utilized. In [12] the effective stressden

G=0%.0-0!/2 (2.4.42)

proposed in [91] is applied to formulate the creep-damagestidative equation.
Mechanisms of damage activation and deactivation are takenaccount. The
model predictions are compared with experimental data eégrin copper. In
[259, 260, 261, 262] a second rank damage tensor is applrethdomodeling of
creep of nickel-based single crystal super-alloys SRR @PG¥SX-6 at760° C.
The proposed constitutive equations take into accountthethitial anisotropy and
the damage induced anisotropy.

The symmetry group of a symmetric second rank tensor inslatkast nine el-
ements (see Sect. 2.3.2). With the second rank damage terdstire effective stress
tensors (2.4.36) or (2.4.42) only restrictive forms of otthpic tertiary creep can be
considered (a similar situation is discussed in Sect. R.Blerefore in many works
it is suggested to introduce higher order damage tensordifferent definitions
of damage tensors one may consult [8, 10, 55, 172, 183, 29t}itikal review
is given in [284]. At present, the available experimentaladan creep responses
do not allow to verify whether the orthotropic symmetry isappropriate symme-
try assumption for the modeling of anisotropic creep-daenaigpcesses. From the
micro-structural point of view one may imagine rather coexpihree-dimensional
patterns of voids and cracks which nucleate and propagé#te assult of multi-axial
non-proportional loadings. An attempt to predict thesdegpas would result in a
complex mathematical model with a large (or even infinitanbar of internal vari-
ables including tensors of different rank. A model to cheeaze different patterns
of cracks may be based on the orientation distribution foncorientation averag-
ing and the so-called orientation tensors. This approaetidsly used in different
branches of physics and materials science for the statisnodeling of oriented
micro-structures. Examples include fiber suspensions][i8iktures [112], poly-
mers and polymer composites [21, 307]. The application iehtational averaging
to characterize damage states under creep conditiongissdisd in [212, 240, 300].

Finally let us note, that the material behavior at elevatgdperature and non-
proportional loading is a complex interaction of differglgformation and damage
mechanisms such as hardening, softening, creep-damégegfaamage, etc. Sev-
eral unified models utilize constitutive equations of credth kinematic and/or
isotropic hardening and include damage effects by meankeokffective stress
concept and the strain equivalence principle. In [158] tlailvh-Khadjinsky kine-
matic hardening rule, see Sect. 2.3.2 and isotropic KachRatotnov type damage
variable are discussed. The damage rate is additionallgrged by the magnitude
of the hardening variable, so that the coupling effect of @genand strain harden-
ing/softening can be taken into account. It is shown thatkihematic hardening
coupled with isotropic damage predicts well the effect ofger life-time after the
stress reversal. In [98] the Chaboche-Rousselier visastiplty model is modified
to predict the coupled creep-plasticity-damage behaiibe scalar damage vari-
able is introduced as a sum of the accumulated time-depeaddrtycle-dependent
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components. Various approaches to formulate a unified rmbhtaodel within the
framework of continuum damage mechanics and thermodysanfidissipative
processes are discussed in [85, 86, 88, 185].

The verification of a unified model with non-linear anisoimardening
and damage coupling requires a large number of independstd tinder non-
proportional loading. As a rule, accurate experimentahdae rarely available.
Furthermore, non-uniform stress and strain fields may berg¢éed in a standard
uni-axial specimen under non-proportional cyclic loadeunditions [189]. They
may be the reason for the large scatter of experimental adatarésleading inter-
pretations.



