Parts from this thesis has been published and presented in lectures and posters above all in securing the priority.

Publications

Lectures

KOBAYASHI, N., SCHLIEMANN, W., STRACK, D.
Betaxanthin biosynthesis in the hairy root culture of *Beta vulgaris* L. subsp. *vulgaris* ‘Golden Beet’ (Garden Beet Group)
Laboratoire de Physiologie végétale, Université de Neuchâtel (Switzerland), May 14, 1998

SCHLIEMANN, W., KOBAYASHI, N., STEINER, U., STRACK, D.
Spontaneous reactions in betalain biosynthesis
4th Dutch-German Workshop on Regulation of Secondary Metabolism, Bad Herrenalb, September 27-29, 1998

KOBAYASHI, N., SCHLIEMANN, W., STRACK, D.
Betalanthin formation in plants and hairy root cultures of *Beta vulgaris* L.
Chiba University, Faculty of Pharmaceutical Sciences, Laboratory of Molecular Biology and Biotechnology, Research Center of Medicinal Resources, Chiba (Japan), December 18, 1998

KOBAYASHI, N., SCHMIDT, J., NIMTZ, M., WRAY, V., SCHLIEMANN, W.
Betalains from Christmas cactus (*Schlumbergera x buckleyi*)
XXth International Conference on Polyphenols, Freising-Weihenstephan, September 11-15, 2000

Posters

SCHLIEMANN, W., KOBAYASHI, N., STEINER, U., STRACK, D.
Non-enzymic steps in betalain biosynthesis
Botanical Congress, Bremen, August 30 - September 6, 1998
KOBAYASHI, N., SCHLIE Mann, W., STRACK, D.
Is the last step in betalain biosynthesis an enzymic or a spontaneous process?
4th Dutch-German Workshop on Regulation of Secondary Metabolism, Bad Herrenalb, September 27-29, 1998

SCHLIE Mann, W., KOBAYASHI, N., STEINER, U.S., VOGT, T., STRACK, D.
Enzymic and molecular analysis of betalain biosynthesis
75th Annual Meeting of the American Society of Plant Physiologists, Baltimore, MD, USA, July 24-28, 1999

KOBAYASHI, N., SCHMIDT, J., SCHLIE Mann, W.
Metabolic formation and occurrence of dopamine-derived betacyanins

KOBAYASHI, N., SCHMIDT, J., STRACK, D., SCHLIE Mann, W.
A new biosynthetic pathway leading to dopamine-derived betacyanins

KOBAYASHI, N., SCHMIDT, J., NIMTZ, M., WRAY, V., SCHLIE Mann, W.
Betalains from Schlumbergera x buckleyi
Meeting „Biosynthesis and Accumulation of Secondary Products“, Martin-Luther-University Halle-Wittenberg, Halle (Saale), September 24-27, 2000

SCHLIE Mann, W., KOBAYASHI, N., STEINER, U.S., VOGT, T., STRACK, D.
Advances in betalain biosynthesis of higher plants
Meeting „Biosynthesis and Accumulation of Secondary Products“, Martin-Luther-University Halle-Wittenberg, Halle (Saale), September 24-27, 2000
Content

1 Introduction

1.1 Plant pigments

1.2 Betalains

1.3 Aim of the study

2 Materials

2.1 Plants

2.1.1 Beets

2.1.2 Cactaceae

2.1.3 Plants

2.2 Cell cultures

2.2.1 Hairy root cultures of beets

2.2.2 Other cell cultures

2.3 Chemicals

2.4 Equipments

3 Methods

3.1 Isolation and purification of betalains

3.1.1 Isolation and purification of dopamine-derived betacyanins

3.1.2 Isolation and purification of betalains from Christmas cactus

3.1.3 Isolation of miraxanthin V (dopamine-betaxanthin) and betalamic acid

3.1.4 Partial synthesis of \((R)\)-Phe-betaxanthin and vulgaxanthin I

\((S)\)-Gln-betaxanthin

3.2 Accumulation and occurrence of betalains

3.2.1 Short-term dopamine feeding experiment

3.2.2 Identification and quantification of dopamine-derived betacyanins

by co-injection analyses

3.2.3 Betacyanin compositions during flower development and in different flower

organs of Christmas cactus

3.2.4 Betacyanin compositions in fruits and flowers from different species

of Cactaceae

3.3 Feeding experiments

3.3.1 Feeding of amino acids and amines to hairy root cultures of yellow beet and

seedlings of fodder beet
3.3.2 Feeding of (S)-Phe, (R)-Phe and (S)/(R)-Phe to different cultures and fodder beet seedlings.................15
3.3.3 Uptake kinetics of (S)-Phe, (R)-Phe and (S)/(R)-Phe by hairy root cultures of yellow beet...16
3.3.4 Feeding of amino acids and (NH₄)₂SO₄ to hairy root culture of yellow beet...16
3.3.5 Feeding of 2-aminooindan 2-phosphonic acid (AIP) to hairy root cultures of yellow beet and seedlings of fodder beet.................17
3.3.6 Feeding of betalamic acid to broad bean and pea seedlings................17
3.4 Extraction of betalains...17
3.5 Preparation of protein extracts and assays for the condensation of betalamic acid with amino acids...17
3.6 Uptake of betaxanthins to red beet vacuoles..18
3.6.1 Preparation of protoplasts and vacuoles from red beet hypocotyls.............18
3.6.2 Marker enzymes...19
3.6.3 Transport studies..20
3.6.4 Preparation of mini-protoplasts and uptake experiments.........................20
3.7 High performance liquid chromatography (HPLC)..21
3.8 Quantification of betalains...22
3.9 Radioactivity measurement...22
3.10 Amino acid analyses..22
3.11 Chemical and spectroscopic identification of betalains.................................23
3.11.1 Enzymatic hydrolysis of 2-descarboxy-betanin.....................................23
3.11.2 Racemization and degradation of phyllocactin.....................................23
3.11.3 Liquid chromatography-mass spectrometry (LC-MS)..........................23
3.11.4 Nuclear magnetic resonance (NMR) spectroscopy................................24
3.11.5 Sugar composition and carbohydrate methylation analysis................24
3.11.6 Microscopy...24
4 Results ..26
4.1 Dopamine-derived betacyanins..26
4.1.1 HPLC patterns of betalains in hairy root culture of yellow beet and seedlings of dopamine fed fodder beet.................................26
4.1.2 Retention time, HPLC-PDA, LC-MS and ¹H-NMR data of betalains from hairy root cultures of yellow beet..28
4.1.3 Short-term dopamine feeding experiments……………………………………………………………..33
4.1.4 Occurrence of dopamine-derived betacyanins……………………………………………………….34
4.1.5 Feeding of Tyr, Dopa, tyramine and dopamine to seedlings of fodder beet……35
4.2 Betalains from Christmas cactus………………………………………………………………………37
4.2.1 HPLC pattern of betalains from Christmas cactus…………………………………………………37
4.2.2 Retention time, HPLC-PDA, LC-MS and 1H-NMR data of betalains from Christmas cactus….38
4.2.3 Betacyanin accumulation during flower development of Christmas cactus………46
4.2.4 Betacyanin distribution in different organs of Christmas cactus………………….46
4.2.5 Betacyanins in flowers and fruits of Cactaceae……………………………………………………..48
4.3 Condensation reaction between betalamic acid and amino acids………………………………49
4.3.1 Experiments to catalyse the condensation reaction by protein extracts………………….49
4.3.2 Hairy root cultures of yellow beet and seedlings of fodder beet…………….…………………49
4.3.3 HPLC pattern of betaxanthins from hairy root cultures of yellow beet…………………50
4.3.4 Betaxanthin accumulation and growth of yellow beet hairy roots………………….51
4.3.5 Retention time and HPLC-PDA data of synthetic betaxanthin standards and betaxanthins after feeding of amino acids and polyamines to hairy root cultures of yellow beet………………………………………………………51
4.3.6 Feeding of amino acids and amines to hairy root cultures of yellow beet and seedlings of fodder beet……………………………………………………….53
4.3.7 Feeding of (S)-Phe and (R)-Phe to different cultures and fodder beet seedlings………………………………………………………………………………56
4.3.8 Feeding of (S)-Thr, (S)-Ala, (S)-Leu and (NH₄)₂SO₄ to hairy root cultures of yellow beet………………………………………………………………………………57
4.3.9 Feeding of 2-aminooindan 2-phosphonic acid (AIP) to hairy root cultures of yellow beet………………………………………………………………………………57
4.3.10 Feeding of betalamic acid to plants that do not belong to the Caryophyllales…61
4.4 Transport of betaxanthins into red beet vacuoles………………………………………………….62
4.4.1 Microscopic analysis of red beet vacuoles…………………………………………………………..62
4.4.2 HPLC patterns of betalains in vacuoles and hypocotyls of red beet…………………………….62
4.4.3 Marker enzymes……………………………………………………………………………………..63
4.4.4 Identification of miraxanthin V and (R)-Phe-betaxanthin after uptake into red beet vacuoles………………………………………………………………………………..64
4.4.5 Uptake of miraxanthin V and (R)-Phe-betaxanthin in the presence of MgATP or ATP
4.4.6 Kinetics of miraxanthin V and (R)-Phe-betaxanthin uptake into red beet vacuoles
4.4.7 Inhibition of betaxanthins uptake by different inhibitors
4.4.8 Formation of (R)-Phe-betaxanthin in red beet evacuolated mini-protoplasts
4.5 Microspectrophotometric analyses of beet hypocotyls

5 Discussion
5.1 Betalain biosynthesis
5.3 Dopamine-derived betacyanins
5.4 Betacyanins from Christmas cactus
5.2 The spontaneous reaction in betalain biosynthesis
5.5 Transport of betaxanthins into red beet vacuoles
5.6 Microspectrophotometric analyses of beet hypocotyls

6 Summary
7 Zusammenfassung
8 References
<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC transporter</td>
<td>ATP-binding cassette transporter</td>
</tr>
<tr>
<td>AIP</td>
<td>2-Aminooindan 2-phosphonic acid</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine 5’-triphosphate</td>
</tr>
<tr>
<td>AU</td>
<td>Absorbance unit</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>2,4-D</td>
<td>2,4-Dichloro-phenoxyacetic acid</td>
</tr>
<tr>
<td>2-D-cyclo-D</td>
<td>2-Desarboxy-cyclo-Dopa</td>
</tr>
<tr>
<td>Dopa</td>
<td>3,4-dihydroxyphenylalanine</td>
</tr>
<tr>
<td>DNB-GS</td>
<td>Dinitrobenzene glutathione</td>
</tr>
<tr>
<td>DTT</td>
<td>DL-Dithiothreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamine tetraacetic acid</td>
</tr>
<tr>
<td>EGTA</td>
<td>Ethylene glycol bis (2-aminoethyl)-tetraacetic acid</td>
</tr>
<tr>
<td>ESI</td>
<td>Electrospray ionization</td>
</tr>
<tr>
<td>FW</td>
<td>Fresh weight</td>
</tr>
<tr>
<td>GS</td>
<td>Glutathione</td>
</tr>
<tr>
<td>HEPES</td>
<td>N-(2-Hydroxyethyl)-piperazine-N'-2-ethane sulfonic acid</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>HRC</td>
<td>Hairy root culture</td>
</tr>
<tr>
<td>KPi</td>
<td>Potassium phosphate buffer</td>
</tr>
<tr>
<td>LC-MS</td>
<td>Liquid chromatography-mass spectrometry</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectrometry</td>
</tr>
<tr>
<td>MES</td>
<td>2-[N-Morpholino]-ethane sulfonic acid</td>
</tr>
<tr>
<td>β-NADP</td>
<td>β-Nicotinamide adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear magnetic resonance</td>
</tr>
<tr>
<td>PAL</td>
<td>Phenylalanine ammonia-lyase</td>
</tr>
<tr>
<td>PDA</td>
<td>Photodiode array</td>
</tr>
<tr>
<td>pers. commun.</td>
<td>Personal communication</td>
</tr>
<tr>
<td>Prep. HPLC</td>
<td>Preparative HPLC</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolution per minute</td>
</tr>
<tr>
<td>(R_t)</td>
<td>Retention time</td>
</tr>
<tr>
<td>ThiaPro</td>
<td>(S)-4-Thiaproline</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris (hydroxymethyl)-aminomethane</td>
</tr>
<tr>
<td>UDPG</td>
<td>Uridindiphosphate-glucose</td>
</tr>
</tbody>
</table>