Aus dem Institut für Physiologische Chemie
an der Martin-Luther-Universität Halle-Wittenberg

(Direktor Prof. Dr. med. habil. Dr. rer. nat. Th. Braun)

Untersuchungen zum Einfluß freier Fettsäuren und Öle auf in vitro kultivierte Keratinozyten

Dissertation
zur Erlangung des akademischen Grades
Doktor der Medizin (Dr. med.)

vorgelegt
der Medizinischen Fakultät
der Martin-Luther-Universität Halle-Wittenberg

verteidigt am 10. Dezember 2003

von Bettina Ruth Kuhnt
geboren am 9.7.1974 in Zerbst/Anhalt

Betreuer: Prof. Dr. med. habil. D. Gläßer

Gutachter: Prof. Dr. med. habil. D. Gläßer, Martin-Luther-Universität Halle-Wittenberg
Prof. Dr. rer. nat. habil. W. Wohlrab, Martin-Luther-Universität Halle-Wittenberg
Prof. Dr. med. habil. W.-I. Worret, Technische Universität München

[urn:nbn:de:gbv:3-000006880](http://nbn-resolving.de/urn/resolver.pl?urn=nbn%3Ade%3Agbv%3A3-00006880)
Ziel der Arbeit war es, einige Aspekte Wirkung freier Fettsäuren (FFS) und Öle auf humane in vitro kultivierte Keratinozyten der Linie HaCaT näher zu beleuchten.

Hierzu wurden zunächst Studien zur Aufnahme von Fettsäuren unter Verwendung der selbstfluoreszierenden Parinarsäure als Modellsubstanz durchgeführt. Die Messungen erfolgten mittels Laser Scan Mikroskopie (Ex=364nm, Em>450nm) an einzelnen Zellen. Es wurde gezeigt, daß Parinarsäure zunächst in die Zellmembran aufgenommen wird, um dann auf Zellinnenmembranen umverteilt zu werden.

Mittels Messung von externalisiertem Phosphatidylserin nach Einwirkung von FFS und Ölen ließ sich ausschließlich für ungesättigte Fettsäuren eine proapoptotische Wirkung nachweisen. In der Arbeit werden zytotoxische, genauer proapoptotische Wirkungen ungesättigter FFS an einer hyperproliferativen Zelllinie nachgewiesen.

Kuhnt, Bettina: Untersuchungen zum Einfluß freier Fettsäuren und Öle auf in-vitro kultivierte Keratinozyten.
Inhalt

1. EINLEITUNG 1

2. THEORETISCHE GRUNDLAGEN 3
 2.1. DAS UNTERSUCHUNGSOBJEKT 3
 2.1.1. AUFBAU DER HAUT 3
 2.1.2. WACHSTUM UND DIFFERENZIERUNG VON KERATINOZYTEN 4
 2.1.3. ZELLZYKLUS 5
 2.1.4. KERATINOZYTEN DER ZELLINIE HaCaT 6
 2.1.5. APOPTOSE UND NEKROSE 6
 2.2. FETTSÄUREN UND FETTE. 8
 2.2.1. PHYSikalische Eigenschaften und Löslichkeitsverhalten freier FettSäuren und Fette 8
 2.2.2. Bedeutung von freien Fettsäuren und Fetten für Haut und Schleimhäute 10
 2.2.3. Bedeutung von freien Fettsäuren für die Zellmembran 11
 2.2.4. Störung der Ionenhomöostase durch freie Fettsäuren 14
 2.3. UNTERSUCHUNGSPARAMETER 15
 2.3.1. Untersuchungen zur Aufnahme von freien Fettsäuren in die Zellmembran 15
 2.3.2. Messung von Membranschädigungen durch freie Fettsäuren 16
 2.3.3. Prinzip der Messung intrazellulären freien Ca2+ und des pH-Wertes mit Hilfe von Fluoreszenzfärbstoffen 18
 2.3.4. Laser Scanning Mikroskopie 22
 2.3.5. APOPTOSE-NEKROSE - Methoden der Differenzierung 22
3. MATERIAL UND METHODEN

3.1. ZELLKULTUR 25
3.2. HERSTELLUNG DER EFFEKTORLÖSUNGEN 25
3.3. LSM 25
3.3.1. VORBEREITUNG DER ZELLEN 27
3.3.2. MORPHOLOGIE SUBKULTIVIERTER HACaT ZELLEN 27
3.3.3. MESSUNG DER PARINARSÄUREAUFNAHME 28
3.3.4. MESSUNG DER MEMBRANSCHÄDIGUNG DURCH FETTSÄUREN MIT CARBOXYFLUORESZEIN 28
3.3.5. MESSUNG DES INTRAZELLULÄREN pH WERTES 28
3.3.6. MESSUNG DER INTRAZELLULÄREN CALCIUMKONZENTRATION 28
3.3.7. BESTIMMUNG DER KERNRETRAKTION MITTELS HOECHST 33342 29
3.3.8. DIFFERENZIERUNG ZWISCHEN APOPTOSE UND NEKROSE MITTELS ANNEXIN-FITC BINDUNG 29
3.3.9. BESTIMMUNG DER ZELLVITALITÄT MIT TRIYANBLAU 30
3.3.10. LANGZEITINKUBATIONEN VON KERATINOZYTEN MIT FREIEN FETTSÄUREN 30
3.5. LIPIDEXTRAKTIONEN. 30
3.5.1. LIPIDEXTRAKTION NACH INKUBATION MIT 14C-MARKIERTER PALMITINSÄURE 30
3.5.2. LIPIDEXTRAKTION NACH INKUBATION MIT UNMARKIERTER PALMITINSÄURE 30
3.5.3. DÜNNSCHICHTCHROMATOGRAPHIE 31
3.6. STATISTISCHE AUSWERTUNG 31
3.7. GERÄTE, HILFSMITTEL UND CHEMIKALIEN 32
3.7.1. CHEMIKALIEN 32
3.7.2. GERÄTE UND HILFSMITTEL 33
3.7.3. ZUSAMMENSETZUNG VERWENDETER PUFFERLÖSUNGEN 33

4. ERGEBNISSE UND DISKUSSION 34

4.1. UNTERSUCHUNGEN ZUR AUFNAHME VON FETTSÄUREN IN ZELLEN UNTER VERWENDUNG VON PARINARSÄURE ALS MODELLSUBSTANZ 34
4.2. ZEITABHÄNGIGER UMBAU APPLIZIERTER FREIER PALMITINSÄURE IN HACaT-ZELLEN 37
4.3. Membranschädigung durch freie ungesättigte Fettsäuren 39
4.4. Wirkung freier Fettsäuren auf den intrazellulären pH Wert 41
4.5. Wirkung freier Fettsäuren und nativer Öle auf die intrazelluläre Konzentration freien Calciums 43
4.5.1. Auswertung der Versuche nach Lipp et Niggli und Berechnung der Konzentration intrazellulären freien Calciums nach Grynkiewicz 43
4.5.2. Der Einfluß freier Fettsäuren auf die Konzentration intrazellulären freien Calciums ist konzentrationsabhängig 46
4.5.3. Einfluß der Kettenlänge und des Sättigungsgrades freier Fettsäuren auf die intrazelluläre Konzentration freien Calciums 49
4.5.4. Einfluß eines physiologischen Fettsäuregemisches auf die intrazelluläre Calciumkonzentration 51
4.5.5. Vergleich zum Einfluß von freien Fettsäuren, einem physiologischen Fettsäuregemisch und pflanzlichen Ölen auf die intrazelluläre Calciumkonzentration 52
4.5.6. Einfluß des Kulturtalters auf die fettsäureinduzierte Veränderung der intrazellulären Calciumkonzentration 55
4.6. Apoptose und Nekrose als Antwort auf die Applikation von freien Fettsäuren 59
4.6.1. Apoptosedetektion mittels Bestimmung externalisierten Phosphatidylinerins 59
4.6.2. Nachweis der Kernpyknose 63

5. Zusammenfassung 65

6. Literaturverzeichnis 67

6.1. Quellennachweis der Abbildungen 77

7. These 78
Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM-Ester</td>
<td>Acetoxymethylester</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>6-CF</td>
<td>6-Carboxyfluoreszein</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamintetraacetat</td>
</tr>
<tr>
<td>EGF</td>
<td>Epidermal Growth Factor</td>
</tr>
<tr>
<td>EGTA</td>
<td>Ethylenglycol-O,O′-bis(2-aminoethyl)-N,N,N′,N′-tetraacetat</td>
</tr>
<tr>
<td>FABP</td>
<td>Fatty Acid Binding Protein</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluoreszeinisothiocyanat</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetal Calf Serum</td>
</tr>
<tr>
<td>HaCaT</td>
<td>Human adult low Calcium high Temperature Keratinocytes</td>
</tr>
<tr>
<td>HBS</td>
<td>HEPES Buffered Saline</td>
</tr>
<tr>
<td>HEPES</td>
<td>2-[4-(2-Hydroxyethyl)-1-piperazinyl]-ethan-sulfonsäure</td>
</tr>
<tr>
<td>LSM</td>
<td>Laser Scanning Microscope</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>POC-Kammer</td>
<td>Perfusion, Open and Closed Chamber</td>
</tr>
<tr>
<td>PPAR</td>
<td>Peroxisome-Proliferator-Activated Receptor</td>
</tr>
<tr>
<td>SFM</td>
<td>Serum Free Media</td>
</tr>
<tr>
<td>TEWL</td>
<td>Transepidermal Water Loss</td>
</tr>
</tbody>
</table>
1. Einleitung

Mangel an essentiellen Fettsäuren leiden, denen ähneln, die an humaner z.B. psoriatisch veränderter Haut vorkommen (Kömöves et al. 2000).

2. Theoretische Grundlagen

2.1. Das Untersuchungsobjekt

2.1.1. Aufbau der Haut

Abb. 1: Aufbau der Epidermis und Verteilung freien Calciums intraepidermal, modifiziert nach Menon et al. 1994 (aus: siehe Quellennachweis der Abb.)
2.1.2. Wachstum und Differenzierung von Keratinozyten

2.1.3. Zellzyklus

Als Zellzyklus wird die Veränderung von Zellen bei Wachstum und Differenzierung beschrieben (Schiebler et al. 1991 S 5-31).

2.1.4. Keratinozyten der Zelllinie HaCaT

2.1.5. Apoptose und Nekrose

Bei der Zellnekrose ist eine Schädigung so stark, daß die Membranintegrität nicht aufrechterhalten werden kann. Der Zellinhalt tritt aus, es kommt zur Freisetzung von Botenstoffen, mit der Folge einer lokalen Entzündung, durch die auch umliegende Zellen betroffen sind (Paus et al. 1995).

2.2. Fettsäuren und Fette

2.2.1. Physikalische Eigenschaften und Löslichkeitsverhalten freier Fettsäuren und Fette

Tabelle 1: Fettsäuren modifiziert nach Gurr et James 1971

<table>
<thead>
<tr>
<th>Trivialname</th>
<th>Systematischer Name</th>
<th>Summenformel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesättigte Fettsäuren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laurinsäure</td>
<td>Dodecansäure</td>
<td>C_{12}H_{26}O_{2}</td>
</tr>
<tr>
<td>Myristinsäure</td>
<td>Tetradecansäure</td>
<td>C_{14}H_{30}O_{2}</td>
</tr>
<tr>
<td>Palmitinsäure</td>
<td>Hexadecansäure</td>
<td>C_{16}H_{32}O_{2}</td>
</tr>
<tr>
<td>Stearinsäure</td>
<td>Octadecansäure</td>
<td>C_{18}H_{36}O_{2}</td>
</tr>
<tr>
<td>Arachidinsäure</td>
<td>Eicosansäure</td>
<td>C_{20}H_{40}O_{2}</td>
</tr>
<tr>
<td>Behensäure</td>
<td>Docosansäure</td>
<td>C_{22}H_{44}O_{2}</td>
</tr>
<tr>
<td>Einfach ungesättigte Fettsäuren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palmitoleinsäure</td>
<td>9-cis-Hexadecensäure</td>
<td>C_{16}H_{30}O_{2}</td>
</tr>
<tr>
<td>Ölsäure</td>
<td>9-cis-Octadecensäure</td>
<td>C_{18}H_{34}O_{2}</td>
</tr>
<tr>
<td>Vaccensäure</td>
<td>11-cis-Octadecensäure</td>
<td>C_{18}H_{34}O_{2}</td>
</tr>
<tr>
<td>Eicosensäure</td>
<td>11-cis-Eicosensäure</td>
<td>C_{20}H_{34}O_{2}</td>
</tr>
<tr>
<td>Erucasäure</td>
<td>13-cis-Docosensäure</td>
<td>C_{22}H_{46}O_{2}</td>
</tr>
<tr>
<td>Mehrfach ungesättigte Fettsäuren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linolsäure</td>
<td>9,12-all-cis-Octadecadiensäure</td>
<td>C_{18}H_{34}O_{2}</td>
</tr>
<tr>
<td>α-Linolensäure</td>
<td>9,12,15-all-cis-Octatriensäure</td>
<td>C_{18}H_{36}O_{2}</td>
</tr>
<tr>
<td>γ-Linolensäure</td>
<td>6,9,12-all-cis-Octatriensäure</td>
<td>C_{18}H_{36}O_{2}</td>
</tr>
<tr>
<td>Arachidonsäure</td>
<td>5,8,11,14-all-cis-Eicosatetraensäure</td>
<td>C_{20}H_{40}O_{2}</td>
</tr>
</tbody>
</table>

Tabelle 2: Öle modifiziert (nach Welzl et al. 1985, Kerschbaum et Schweiger 2001) und physiologische Fettsäuremischung (Hennig 1993)

<table>
<thead>
<tr>
<th>Öl</th>
<th>Pflanze</th>
<th>Zusammensetzung (alle Anteile >1%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olivenöl</td>
<td>Olea europaea</td>
<td>66.3% Ölsäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.3% Linolsäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.9% Palmitinsäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.9% Eicosensäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.7% Palmitoleinsäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.4% Stearinsäure</td>
</tr>
<tr>
<td>Klettenöl</td>
<td>Arctium lappa</td>
<td>61.7% Linolsäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9% Ölsäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8.3% Linolensäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5% Palmitinsäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.7% Stearinsäure</td>
</tr>
<tr>
<td>Avocadoöl</td>
<td>Persea americana</td>
<td>49.8% Ölsäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19.5% Palmitinsäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.3% Linolsäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.8% Palmitoleinsäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.8% Vaccensäure</td>
</tr>
<tr>
<td>Nachtkerzenöl</td>
<td>Oenothera bieenis</td>
<td>71.1% Linolsäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.4% Linolensäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.2% Ölsäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.0% Palmitinsäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.9% Stearinsäure</td>
</tr>
<tr>
<td>Hanföl</td>
<td>Cannabis sativa</td>
<td>57.8% Linolsäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20.1% Linolensäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.4% Ölsäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6.6% Palmitinsäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.4% Stearinsäure</td>
</tr>
<tr>
<td>Physiologische</td>
<td>Hennig et al. 1993</td>
<td>37% Ölsäure</td>
</tr>
<tr>
<td>Fettsäuremischung</td>
<td></td>
<td>30% Palmitinsäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16% Linolsäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14% Stearinsäure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3% Arachidonsäure</td>
</tr>
</tbody>
</table>

2.2.2. Bedeutung von freien Fettsäuren und Fetten für Haut und Schleimhäute

Ausgangsprodukt der Synthese der proinflammatorischen Prostaglandine und Leukotriene ein (Marnett et al. 1999).

Polyungesättigten Fettsäuren wird sogar eine gewisse kardioprotektive Wirkung zugestanden, der Mechanismus ist jedoch unklar (Pepe et Lennan 2002).

2.2.3. Bedeutung von freien Fettsäuren für die Zellmembran

Bei den Phospholipiden ist im Vergleich zum Fett (Triacylglycerol) ein Acylrest durch einen Phosphatrest ersetzt, an den unterschiedliche weitere Moleküle gekoppelt sein können. Es kommt hierdurch zur Ausbildung eines hydrophilen Anteils in einem zuvor hydrophoben Molekül. So erklärt sich die Ausrichtung der Phospholipide in der Membran.

Anerkennung früherer Forschungsergebnisse ein Zusammenwirken beider Mechanismen - der aktiven und der passiven Fettsäureaufnahme - favorisiert.

2.2.4. Störung der Ionenhomöostase durch freie Fettsäuren

Ob Calcium und Fettsäurebindung zusammengehören, beantworten die Zellen selbst: Siegenthaler et al. beschrieben 1997 die Bildung eines Enzymheterokomplexes mit Calcium-und Fettsäurebindungskapazität und einer direkten Beeinflussung der Fettsäurebindung durch die Calciumkonzentration der Umgebung.

2.3. Untersuchungsparameter

2.3.1. Untersuchungen zur Aufnahme von freien Fettsäuren in die Zellmembran

![Formel von trans-Parinarsäure](image)

Abb. 5: Formel von trans-Parinarsäure
Abb. 6: Formel von cis-Parinaursäure

In der folgenden Tabelle 3 sind Vorteile und Nachteile der Parinaursäure als Marker für die Fettsäureaufnahme in Membranen gegenübergestellt.

Tabelle 3: Vor- und Nachteile der Messung der Fettsäureaufnahme mittels Parinaursäure im Vergleich zur Verwendung markierter Fettsäuren (nach Oberle et al. 1997)

<table>
<thead>
<tr>
<th>Vorteile</th>
<th>Nachteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fettsäure ohne zusätzliche Moleküle</td>
<td>Relativ kurze Halbwertzeit, besonders unter Lichteinfluß</td>
</tr>
<tr>
<td>Keine Radioaktivität</td>
<td>Veränderte Molekülbeweglichkeit im Vergleich zu anderen Fettsäuren</td>
</tr>
<tr>
<td>Eigenfluoreszenz in lipophiler Umgebung</td>
<td></td>
</tr>
<tr>
<td>Keine nennenswerte Verstoffwechselung</td>
<td></td>
</tr>
</tbody>
</table>

2.3.2. Messung von Membranschädigungen durch freie Fettsäuren

Da eine Beladung von Zellen mit selbstquenchenden Konzentrationen mit deren Überleben nicht vereinbar ist, mußte eine andere Methode gefunden werden. Die Zellen wurden von uns mit Cell Tracker Orange, einem Farbstoff auf Rhodaminbasis, angefärbt, das Außenmedium enthielt 6-CF in nicht selbstquenchender Konzentration.

\[\text{Anregung bei 488\text{nm}}\]

\[\text{Excitation 6-CF} \quad \text{ideal 506\text{nm}} \quad \text{Emission 526\text{nm}} \quad \text{Excitation Rhodamin} \quad \text{ideal 550\text{nm}} \quad \text{Emission Rhodamin 576\text{nm}} \quad \text{Detektion >540\text{nm}}\]

Abb. 7: Flußdiagramm zum Resonanzenegierttransfer, Wellenlängen nach Angaben des Herstellers (Molecular Probes).
Bei enger räumlicher Beziehung zwischen 6-CF und Rhodamin kommt es, wie im Flußdiagramm (Abb. 7) dargestellt, zu einem Resonanzenergietransfer: Wenn die Zellmembran so durchlässig geworden ist, daß die großen, hydrophilen 6-CF-Moleküle sie passieren können, wird durch die Emissionsenergie das Fluoreszein angeregt, dessen Emission gemessen wird. Damit stellt die Methode ein gutes Werkzeug zur Messung von Membranpermeabilisierungen dar.

2.3.3. Prinzip der Messung intrazellulären freien Calciums und des pH-Wertes mit Hilfe von Fluoreszenzfarbstoffen

<table>
<thead>
<tr>
<th>Messung an fixierten Zellen</th>
<th>Messung an vitalen Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nachweis sehr geringer Mengen verschiedenster Substanzen, Substanzklassen und Makromoleküle möglich</td>
<td>Nachweis ist nur für bestimmte Substanzen/Substanzklassen möglich, Kalibrierung oft problematisch</td>
</tr>
<tr>
<td>Eine Messung an einer Zelle/Zellpopulation</td>
<td>Mehrere Messungen an einer bestimmten Zelle/Zellpopulation möglich- Zeitlicher Verlauf der Reaktion einer speziellen Zelle/Zellgruppe wird methodenabhängig ermöglicht</td>
</tr>
<tr>
<td>Mögliche Verfälschung der Ergebnisse durch Abtöten der Zelle</td>
<td>Mögliche Verfälschung der Ergebnisse durch Schädigung der Zelle durch Messinstrument</td>
</tr>
</tbody>
</table>

Fluo-3

Fura-Red

Abb. 8: Dargestellt sind die Formeln der Calciumfluoreszenzfarbstoffe Fluo3 und Fura-Red. In Form der AM-Ester sind sie membrangängig, nach Verseifung durch Esterasen sind sie in der Zelle gefangen. Sie bilden mit Calcium Chelatkomplexe und ändern dadurch ihre Fluoreszenz. (aus: siehe Quellennachweis der Abb.)
Durch Veresterung der Acetyl-Seitenketten mit einer Acetoxyethylgruppe werden die zuvor stark negativen hydrophilen Farbstoffe in hydrophobe umgewandelt, die nicht fluoreszierend und membrangängig sind und nicht mehr in die Zelle injiziert werden müssen. Im Zellinneren werden die Esterbindungen enzymatisch gespalten, der Farbstoff ist in der Zelle „gefangen“ und kann auch erst jetzt, nach der Spaltung, bei Kontakt zu freiem Calcium fluoreszieren (Kao 1994, Molecular Probes Produktinformation 2002).

Abb. 9: Fluoreszenzspektrum des Farbstoffgemisches Fluo3 und Fura-Red. Der resultierende Stokes shift ergibt sich aus der Tatsache, daß bei steigender Calciumkonzentration die Fluoreszenz von Fura-Red abnimmt, die von Fluo3 bei anderer Wellenlänge zu. (aus: siehe Quellennachweis der Abb.)

Voraussetzung ist ein ausreichender Unterschied in der Emissionswellenlänge, technisch günstig ist die Anregung bei gleicher Wellenlänge. Nachteile der Verwendung von
Fluoreszenzfarbstoffen gegenüber z. B. calciumsensitiven Elektroden sind die problematischere (und ungenauere) Kalibrierung, daneben erschweren Überstrahlungsartefakte die zellstrukturelle Zuordnung.

![Abb.10: Formel von SNARF 1 und Spektrum in Abhängigkeit vom pH-Wert (aus: siehe Quellenachweis der Abb.)](image-url)
2.3.4. Laser Scanning Mikroskopie

<table>
<thead>
<tr>
<th>Vergleich zwischen Durchflusszytometrie und Laser Scanning Mikroskopie</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Durchflusszytometrie</td>
<td>Laser-Scanning-Mikroskopie</td>
</tr>
<tr>
<td>Große Anzahl von Zellen im Bereich 10^5 pro Versuch</td>
<td>Kleine Zahl von Zellen im Bereich 10^4 pro Versuch</td>
</tr>
<tr>
<td>Verwendung nichtadhärenten Zellen</td>
<td>Verwendung adhärenten Zellen</td>
</tr>
<tr>
<td>Messung zeitlicher Änderungen eines Parameters in einer Zellpopulation</td>
<td>Messung zeitlicher Änderungen eines Parameters in ein und derselben Zelle</td>
</tr>
<tr>
<td></td>
<td>Gleichzeitige Beobachtung morphologischer Veränderungen einer bestimmten Zelle möglich</td>
</tr>
</tbody>
</table>

2.3.5. Apoptose - Nekrose - Methoden der Differenzierung

Wie bereits im Kapitel 2.1.5 beschrieben, handelt es sich bei Apoptose und Nekrose um verschiedene Arten des Zelltodes. Auch über die Folgen beider Mechanismen für umliegende Zellen wurde berichtet. Wie ist es also möglich, in Experimenten den geordneten vom unkontrollierten Zelltod zu unterscheiden?

![Diagram: Normal distribution of phospholipids in the cell membrane (see reference for figure.)]

Abb. 11: Normale Verteilung der Phospholipide in der Zellmembran (aus: siehe Quellennachweis der Abb.)
Normale Membran:
Phosphatidylserin ist nur an der Membraninnenseite

Zellmembran nach Beginn der Apoptose:
Phosphatidylserin gelangt jetzt auch an die Membranaußenseite

Apoptosedetektion:
Außengelegenes Phosphatidylserin wird mittels Annexin-FITC nachgewiesen

Eine weitere Möglichkeit zur Unterscheidung zwischen Apoptose und Nekrose bildet die Messung der Kerngröße. Während es bei der Nekrose zur Kernschwellung und damit Kernvergrößerung kommt, läßt sich bei der Apoptose die Abnahme des Kernvolumens als typische Veränderung feststellen. Hierbei stellen Kernfarbstoffe wie zum Beispiel HOECHST 33342 durch Anfärbung des Chromatins ein verlässliches Mittel dar.
Zum Nachweis der mitochondrialen Veränderungen, der DNA-Degeneration sowie für zahlreiche bei der Apoptose gebildete Enzyme stehen Nachweismethoden, meist in Form spezifischer Antikörper, zur Verfügung.
3. Material und Methoden

3.1. Zellkultur

Verwendet wurden Keratinozyten der Linie HaCaT (Human adult low Calcium high
Temperature). Diese Zelllinie entstammt einem Operationspräparat der Rückenhaut eines
62jährigen Mannes und wurde aus dem Sicherheitsabstand eines malignen Melanoms
entnommen (Boukamp et al. 1988, vgl. 2.1.4.).

Die Zellen wurden in Keratinozyten SFM (Serum Free Media) unter Supplementierung mit
0.1-0.2 ng/ml EGF (Epidermal Growth Factor) und 25 μg/ml bovinem Hypophysenextrakt
gezüchtet. Als antibiotischer Zusatz wurden 100 U/ml Penicillin und 50 μg/ml Streptomycin
verwendet.

Nach einer Einsaat von einer Million Zellen pro Kulturflasche (20 ml) wurden die
Keratinozyten in 37°C und 10% Kohlendioxid für sieben Tage inkubiert, um dann ausgedünnt
und in neue Kulturgefäße überführt zu werden. Für die Versuche wurden Zellen der 22. bis
35. Passage benutzt.

3.2. Herstellung der Effektorlösungen

Von den verwendeten Fettsäuren und Ölen (Arachidonsäure, Linolsäure, Ölsäure,
Palmitinsäure, Myristinsäure, Laurinsäure, Stearinsäure, physiologische Fettsäuremischung,
Olivenöl, Hanföl, Avocadoöl, Klettenöl und Nachtkerzenöl) wurden Stammlösungen in 96% Ethanol hergestellt, die für die Versuche in Medium (HBS- Hepes Buffered Saline, Gläßer et
al. 1986) weiter verdünnt wurden. Die maximale Ethanolkonzentration im Medium betrug
2,5%. Parallel durchgeführte Kontrollen zeigten, daß diese Ethanolkonzentration keinen
Einfluß auf die intrazelluläre Calciumkonzentration hatte.

Vor Versuchsbeginn wurden die Fettsäurenlösungen im Ultraschallbad behandelt, um eine
möglichst gleichmäßige Verteilung zu gewährleisten. Vergleichsversuche erfolgten mit
Zusatz von BSA (Bovine Serum Albumin).

3.3. LSM

Wir benutzten das Laser Scan Mikroskop LSM 410. Das Gerät ermöglicht sowohl die
konventionelle als auch die konfokalen Laser Scan Mikroskopie. Im Rahmen der
konventionellen Mikroskopie kommen neben der einfachen Durchlichtmikroskopie auch die
üblichen Kontrastverfahren wie Hellfeld, Dunkelfeld, differentieller Interferenzkontrast,
Phasenkontrast, Fluoreszenz und Polarisation zur Anwendung. Im Konfokalmodus werden Fluoreszenz oder Reflexion von Objekten im Auflicht dargestellt.

Abb. 13: Prinzipskizze eines LSM nach Ladic 2002 (aus: siehe Quellenachweis der Abb.) und Foto des benutzten Systems

3.3.1. Vorbereitung der Zellen

Für die Messungen am LSM wurden 100 000 Keratinozyten auf Deckgläser in Petrischalen eingesät. Nach einer Kultivierung im Normalmedium (SFM, siehe oben) für zwei bis sieben Tage (in der Regel drei Tage, Abweichungen wurden gekennzeichnet) wurde das Kulturmedium entfernt und die adhärennten Zellen mit HBS gewaschen und überschichtet. Die Keratinozyten wurden je nach Fragestellung gefärbt (siehe unten) und in eine POC-Kammer (Perfusion, Open and Closed Cultivation) eingespannt.

Angestrebt wurde die Messung kleinerer Zellden, bestehend aus weniger als zehn Zellen.

*Abb.14: POC-Kammer: Die auf runden Deckgläsern gezüchteten Zellen werden vor Versuchsbeginn in die Kammer eingespannt. durch das dünne Glas und dadurch mögliche große Annäherung zwischen Objektiv und Objekt wird eine gute Fluoreszenzausbeute erreicht. *(Quelle siehe Quellennachweis der Abb.)*

3.3.2. Morphologie subkultivierter HaCaT Zellen

3.3.3. Messung der Parinarsäureaufnahme

3.3.4. Messung der Membranschädigung durch Fettsäuren mit Carboxyfluoreszein

3.3.5. Messung des intrazellulären pH Wertes

3.3.6. Messung der intrazellulären Calciumkonzentration

Um die intrazelluläre Calciumkonzentration vitaler Keratinozyten zu bestimmen, verwendeten wir die Farbstoffe Fluo-3 und Fura-Red. Beide ermöglichen bei einer Exzitation mit 488nm eine Messung der Emission im Bereich des sichtbaren Lichts. Der große Stokes Shift erlaubt eine überlagerungsfreie simultane Emissionsmessung bei 525nm (vorwiegend Fluo-3) und 660nm (vorwiegend Fura-Red).
Um Artefakte wie Ungleiche Verteilung und Bleaching der Fluoreszenzindikatoren als Fehlerquelle auszuschalten, bedienten wir uns des Quotienten der Fluoreszenzintensitäten (Lipp et Niggli, 1993):

\[F[\text{Quotient}] = F[525\text{nm}] / F[660\text{nm}] \]

Die Zellen wurden in Färbepegel (HBS mit 2\,µM Fura-Red, 1\,µM Fluo3 und 3\,µl Pluronic 20% in DMSO) für 45min bei 37°C inkubiert, mit HBS gewaschen und dann 15min in HBS inkubiert. Die Messungen erfolgten bei obengenannten Wellenlängen am LSM.

3.3.7. Bestimmung der Kernretraktion mittels HOECHST 33342

3.3.8. Differenzierung zwischen Apoptose und Nekrose mittels Annexin-FITC Bindung

Im Gegensatz zu den Messungen der intrazellulären Calciumkonzentration stellt die Detektion von Apoptose mittels Bindung von Annexin-FITC an Phosphatidylserin an der Außenseite der Zellmembran eine Untersuchung an toten Zellen dar. Für diese Experimente wurden die vitalen Keratinozyten für 1h mit der Effektorlösung inkubiert. Als Kontrolle erfolgte die Inkubation in HBS mit 2,5% Alkohol.

Anschließend wurden die Zellen zweimal in PBS (Phosphate Buffered Saline) gewaschen und dann in der POC-Kammer mit 400µl Bindungspuffer, 10µl Annexin V-FITC (20µg/ml) und 20µl Propidiumiodid (25µg/ml) für 15min bei Raumtemperatur im Dunkeln inkubiert. Die Inkubation hiermit ist so zytotoxisch, daß man im Folgenden von der Messung an toten Zellen ausgeht. Die Zellen wurden erneut in PBS gewaschen und dann am LSM vermessen (Exzitation bei 488nm, Emissionsmessung bei 525 und 660nm).
3.3.9. Bestimmung der Zellvitalität mit Trypanblau

3.3.10. Langzeitinkubationen von Keratinozyten mit freien Fettsäuren

3.5. Lipidextraktionen

3.5.1. Lipidextraktion nach Inkubation mit 14C-markierter Palmitinsäure

Zur Lipidextraktion wurden adhäsente Keratinozyten mit 10 μM 14C-Palmitinsäure 10, 30, 60min, 2, 4 und 24h in Kulturmedium (Keratinozytenmedium, serumfrei) inkubiert. Dabei entsprach die Radioaktivität 0,5μCi pro Ansatz, also 3μCi pro Versuch. Nach zweimaligem Waschen der Zellen mit PBS wurden die Lipide mit iso-Propanol/n-Hexan 2:3 herausgelöst. Das Lösungsmittel wurde unter Stickstoff abgedampft und der Rückstand in 50µl Chloroform/Methanol 2:1 aufgenommen.

3.5.2. Lipidextraktion nach Inkubation mit unmarkierter Palmitinsäure

Analog zur in 3.5.1. beschriebenen Lipidextraktion wurden die Keratinozyten mit 10μM Palmitinsäure in serumfreiem Medium für 60min inkubiert. Nach zweimaligem Waschen mit PBS wurden die Zellen mit 10%igem Trypsin abgelöst und die Trypsinierung durch Zugabe
von mit BSA versetztem Kulturmedium beendet. Die Zellsuspension wurde bei 5000*g
zentrifugiert, zweimal in PBS gewaschen und anschließend erneut zentrifugiert. Die
Flüssigkeit wurde abdekantiert und das Pellet zur Lipidextraktion mit Isopropanol/n-Hexan
versetzt. Das Extrakt wurde unter Stickstoff eingedampft und in Chloroform/Methanol
aufgenommen.

3.5.3. Dünnschichtchromatographie

Verwendet wurden MTPLC-Fertigplatten (Kieselgel 40W). Das Extrakt wurde mittels
Dünnschichtchromatographie mit Chloroform/Methanol/Wasser 60:35:8 mit 0,2%
Calciumchlorid im Wasseranteil als Laufmittel aufgetrennt. Die radioaktiven Lipide wurden
durch Autoradiographie (Expositionzeit eine Woche) nachgewiesen. Bei der
Versuchsanordnung mit unmarkierter Fettsäure wurden die Banden in der Iodkammer sichtbar
gemacht und direkt weiterverarbeitet. Außerdem wurden ausgewählte Substanzen des
Fettsäurestoffwechsels als Standards aufgetragen. Wir verwendeten hierbei Stearinsäure,
Phosphatidylcholin, Lysophosphatidylcholin, Phosphatidsäure, Phosphatidylethanolamin und
Phosphatidylinositol. Die Laufmittelfront wurde ausgekratzt, mit Chloroform/Methanol
extrahiert und erneut auf eine Dünnschichtchromatographieplatte aufgetragen. Laufmittel war
in diesem Fall iso-Propanol/n-Hexan 2:3.

Zur dauerhaften Detektion der Banden bei den Versuchen mit unmarkierter Palmitinsäure
wurde Phosphomolybdänsäure-Sprühereagenz (2,5% Phosphomolybdänsäure und 1%
Cersulfat in 12%iger Schwefelsäure) genutzt.

Die Auswertung erfolgte mit Hilfe einer Kamera-Video-Computereinheit unter Verwendung
des Programms BASys 1D nach Helligkeitskriterien.

3.6. Statistische Auswertung

Die statistische Auswertung der Calciumfluoreszenzmessungen erfolgte mittels
mehrfaktorieller einseitiger Varianzanalyse. Hierbei wurden Mittelwerte aus jeweils mehreren
Zellen in mehreren Versuchen (genaue Angaben bei den jeweiligen Abbildungen) verglichen.
Das α-Niveau wurde auf 0,05 festgelegt.

Für die Versuche zur apoptosedetektion mittels Annexin-V-FITC-Bindung wurden
Häufigkeitsvergleiche mit χ²-Tests für k-fach gestufte Merkmale angewandt.

Die Signifikanzprüfung bei den Kernpyknoseuntersuchungen beruht auf Ausgangs- und
Endwertmittelwertvergleichen mittels t-Test für abhängige Stichproben.
3.7. Geräte, Hilfsmittel und Chemikalien

3.7.1. Chemikalien

<table>
<thead>
<tr>
<th>Artikel</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>DME (Dulbecco’s Modified Eagle’s Medium)</td>
<td>SIGMA, Deisenhofen, BRD</td>
</tr>
<tr>
<td>FCS (FetalCalf Serum)</td>
<td>C. C. Pro, Karlsruhe, BRD</td>
</tr>
<tr>
<td>Keratinozyten SFM (Serumfreies Medium)</td>
<td>GIBCO Life Technologies, Eggenstein, BRD</td>
</tr>
<tr>
<td>Zusätze zu Keratinozyten SFM</td>
<td>GIBCO Life Technologies, Eggenstein, BRD</td>
</tr>
<tr>
<td>Penicillin</td>
<td>SIGMA, Deisenhofen, BRD</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>SIGMA, Deisenhofen, BRD</td>
</tr>
<tr>
<td>BSA (Bovine Serum Albumin)</td>
<td>SIGMA, Deisenhofen, BRD</td>
</tr>
<tr>
<td>Trypsin</td>
<td>SIGMA, Deisenhofen, BRD</td>
</tr>
<tr>
<td>EDTA (Ethylendiamintetraacetic acid)</td>
<td>SIGMA, Deisenhofen, BRD</td>
</tr>
<tr>
<td>EGTA (Ethylenglycol-O,O’-bis(2-aminoethyl)- N,N,N’,N’-tetraacet)</td>
<td>SIGMA, Deisenhofen, BRD</td>
</tr>
<tr>
<td>DMSO (Dimethylsulfoxid)</td>
<td>SIGMA, Deisenhofen, BRD</td>
</tr>
<tr>
<td>Pluronic F 127</td>
<td>Calbiochem-Novabiochem Bad Soden, BRD</td>
</tr>
<tr>
<td>Fluo3-AM</td>
<td>Molecular Probes, Eugene, USA</td>
</tr>
<tr>
<td>Fura-Red-AM</td>
<td>Molecular Probes, Eugene, USA</td>
</tr>
<tr>
<td>Calcium Green-AM</td>
<td>Molecular Probes, Eugene, USA</td>
</tr>
<tr>
<td>SNARF 1-AM</td>
<td>Molecular Probes, Eugene, USA</td>
</tr>
<tr>
<td>6-Carboxyfluorescein</td>
<td>SIGMA, Deisenhofen, BRD</td>
</tr>
<tr>
<td>HOECHST 33342</td>
<td>SIGMA, Deisenhofen, BRD</td>
</tr>
<tr>
<td>Trypan Blau</td>
<td>SIGMA, Deisenhofen, BRD</td>
</tr>
<tr>
<td>ApoAlert Annexin V Apoptosis Kit</td>
<td>Clontech, Palo Alto, USA</td>
</tr>
<tr>
<td>Cell Tracker Orange</td>
<td>Molecular Probes, Eugene, USA</td>
</tr>
<tr>
<td>Parinarsäure (cis- und trans-)</td>
<td>MOBITECH, Göttingen, BRD</td>
</tr>
<tr>
<td>Fettsäuren (Myristin-, Laurin-, Stearin-, Palmitin-, Öl , Linol- und Arachidonsäure)</td>
<td>SIGMA, Deisenhofen, BRD</td>
</tr>
<tr>
<td>14-C-Palmitinsäure</td>
<td>NEN, Köln, BRD</td>
</tr>
<tr>
<td>Avocadoöll</td>
<td>Bombastus, Freital, BRD</td>
</tr>
<tr>
<td>Hanföl</td>
<td>Korena, Kroppenstedt, BRD</td>
</tr>
<tr>
<td>Olivenöl</td>
<td>Luccese, San Alessio, Italien</td>
</tr>
<tr>
<td>Nachtkerzenöl</td>
<td>Kattus, Maisach, BRD</td>
</tr>
<tr>
<td>Leinöl</td>
<td>Kunella, Cottbus, BRD</td>
</tr>
<tr>
<td>Klettenöl</td>
<td>Prof. Aizetmüller, Bundesanstalt für Getreide-Kartoffel- und Fettforschung/ Institut für Chemie und Physik der Fette, Münster, BRD</td>
</tr>
<tr>
<td>Phosphatidylcholin, Lysophosphatidylcholin, Phosphatidsäure, Phosphatidylethanolamin und Phosphatidylinositol</td>
<td>SIGMA, Deisenhofen, BRD</td>
</tr>
<tr>
<td>ATP (Adenosintriphosphat)</td>
<td>SIGMA, Deisenhofen, BRD</td>
</tr>
<tr>
<td>Digitonin</td>
<td>Molecular Probes, Eugene, USA</td>
</tr>
</tbody>
</table>
3.7.2. Geräte und Hilfsmittel

<table>
<thead>
<tr>
<th>Artikel</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSM 410 invert</td>
<td>Zeiss, Oberkochen, BRD</td>
</tr>
<tr>
<td>Ölmodernobjektiv Plan/ Neofluar 40x/1.3</td>
<td>Zeiss, Jena, BRD</td>
</tr>
<tr>
<td>POC-Kammer</td>
<td>Bachhofer, Reutlingen, BRD</td>
</tr>
<tr>
<td>Brutschrank</td>
<td>WTB Binder, Tuttlingen, BRD</td>
</tr>
<tr>
<td>Brutschrank</td>
<td>VEB Labortechnik Ilmenau, DDR</td>
</tr>
<tr>
<td>BASys 1D</td>
<td>Signum Computer GmbH, BRD</td>
</tr>
<tr>
<td>SPSS 10.0 für Windows</td>
<td>SPSS Inc., USA</td>
</tr>
<tr>
<td>Office 97</td>
<td>Microsoft Inc., USA</td>
</tr>
<tr>
<td>Chamber Slides 2x4</td>
<td>Bachhofer, Reutlingen, BRD</td>
</tr>
<tr>
<td>Deckgläser</td>
<td>Bachhofer, Reutlingen, BRD</td>
</tr>
<tr>
<td>MTPLC-Platten Kieselgel 40W</td>
<td>Merck, Darmstadt, BRD</td>
</tr>
<tr>
<td>Kulturlaschen</td>
<td>Greiner, Frickenhausen, BRD</td>
</tr>
</tbody>
</table>

3.7.3. Zusammensetzung verwendeter Pufferlösungen

<table>
<thead>
<tr>
<th>Pufferlösung</th>
<th>Zusammensetzung</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS (Phosphate Buffered Saline)</td>
<td>58mM Natriumhydrogenphosphat</td>
</tr>
<tr>
<td></td>
<td>17mM Natriumdihydrogenphosphat</td>
</tr>
<tr>
<td></td>
<td>68mM Natriumchlorid</td>
</tr>
<tr>
<td></td>
<td>pH=7,4</td>
</tr>
<tr>
<td>HBS (HEPES buffered saline)</td>
<td>5mM Glucose</td>
</tr>
<tr>
<td>nach Gläßer et al. 1986</td>
<td>140mM Natriumchlorid</td>
</tr>
<tr>
<td></td>
<td>5mM Kaliumchlorid</td>
</tr>
<tr>
<td></td>
<td>0,2mM EDTA</td>
</tr>
<tr>
<td></td>
<td>1mM Calciumionen</td>
</tr>
<tr>
<td></td>
<td>1mM Magnesiumionen</td>
</tr>
<tr>
<td></td>
<td>5mM HEPES</td>
</tr>
<tr>
<td></td>
<td>200.000 IU/l Penicillin G</td>
</tr>
<tr>
<td></td>
<td>pH=7,4</td>
</tr>
</tbody>
</table>
4. Ergebnisse und Diskussion

4.1. Untersuchungen zur Aufnahme von Fettsäuren in Zellen unter Verwendung von Parinarsäure als Modellsubstanz

Abb.15c: Zeitlicher Verlauf der Parinarsäureaufnahme: Das erste Bild zeigt die Eigenfluoreszenz der Keratinozyten, danach wurde cis-Parinarsäure (Endkonzentration 100µM) zugegeben. Die weiteren Bilder sind im Abstand von jeweils sechs Minuten aufgenommen.
In den Diagrammen (Abb.15a und b) und im Bild (Abb. 15c) sind entsprechende Versuche dargestellt. Die Fluoreszenzzunahme ist ein Maß für den Übergang der Parinarsäure in hydrophobe Umgebung, also in der Hauptsache in Membranen. Erwartungsgemäß kam es zu einem schnelleren und stärkeren Anstieg der Fluoreszenz im Plasmalemm und zeitlich versetzt zu einer Fluoreszenzzunahme in Zellinnenmembranen. Dabei bestand eine Überlagerung der Zellinnenmembranen durch das Plasmalemm. Die höhere Fluoreszenzzunahme in der Zellmembran kann verschiedene Ursachen haben: zum Einen ergibt sich aus der Tatsache, daß nur Parinarsäure, die vorher die Zellmembran passiert hat, in Membranen in intrazelluläre Membranen umverteilt werden kann, ein Konzentrationsgefülle. Dabei ist die Konzentration im Medium zumindest anfangs weit höher, als die im Zytosol. Zum Zweiten kann die Fluoreszenzintensität durch die Überlagerung durch Zytoplasma (Filterwirkung) abgeschwächt sein. Eine im Vergleich sehr geringe Fluoreszenzzunahme im Zytosol und im Karyoplasma ist durch die Fluoreszenz von Parinarsäure bei Bindung an FABP’s (fatty acid binding proteins) zu erwarten (Tan et al. 2002).

In den gezeigten (Abb. 15a und b) wie in weiteren durchgeführten Versuchen unterschied sich die Aufnahme von cis- und trans- konfigurierter Parinarsäure wenig. Tendenziell wurde trans-Parinarsäure besser aufgenommen. Entsprechende Versuche müßten, um verläßlichere Daten zu erheben, jedoch an größeren Zellpopulationen, eventuell mit einer anderen Methode, wie zum Beispiel der Durchflußzytometrie, verifiziert werden. Grundsätzlich erscheint eine bevorzugte Aufnahme von trans-Parinarsäure wegen ihrer gestreckten Form jedoch, zumindest was den passiven Transport angeht, wahrscheinlicher. Im Diagramm (Abb. 15a) kommt es nach einem initial stärkeren Anstieg zu einer Verringerung der Fluoreszenzzunahme. Es bliebe zu klären, ob dies der Annäherung an eine Sättigung entspricht oder ob eine verminderte Konzentration der Parinarsäure im umgebenden Medium (durch Zerfall und/ oder eine Präzipitation größerer Aggregate) dies bewirkt. Eine Verstoffwechselung ist im Beobachtungszeitraum nicht in nennenswertem Umfang zu erwarten (Huang et al. 2002).

Zusammenfassend kann man sagen, daß die Aufnahme von Parinarsäure als Modellfettsäure ein schnellerer Prozeß ist, wobei eine verläßliche Aussage zur Bevorzugung einer der Konfigurationen weiterer Untersuchungen bedarf. In jedem Fall wird die Parinarsäure zunächst in das Plasmalemm aufgenommen und dann auf intrazelluläre Membranen umverteilt. Eine genaue Zuordnung zu bestimmten Zellkompartmenten ist nicht möglich, es scheint jedoch eine Anreicherung in Zellmembran und perinukleären Membranen und Kernmembran zu geben.
4.2. Zeitabhängiger Umbau applizierter freier Palmitinsäure in HaCaT- Zellen

In den theoretischen Grundlagen wurde auf eine Eigenschaft der Parinarsäure hingewiesen, die für die Aufnahmever suche von Vorteil war: sie wird von der Zelle kaum abgebaut oder anderweitig in ihrer chemischen Struktur verändert (Huang et al. 2002). Was also passiert mit den Fettsäuren, die die Zelle verarbeiten kann?

Hierzu inkubierten wir HaCaT- Zellen mit 14C-Palmitinsäure und trennten die extrahierten Lipide dünnschichtchromatographisch auf. Die Detektion erfolgte durch Autoradiographien (siehe Abb. 16).

Abb.16a
Abb.16: Radiographien: Keratinozyten in Normalmedium wurden mit 14C-markierter Palmitinsäure (10µM, à 0,5µCi, 37°C) inkubiert. Die Inkubation wurde (in jeder Radiographie Säulen von links nach rechts) nach 10min, 30min, 60min, 2h, 4h, 24h abgebrochen, die Lipide wurden extrahiert und auf einer Dünnschichtchromatographieplatte aufgetragen. Zunächst erfolgte eine Auftrennung in Chloroform/Methanol/Wasser als polarem Laufmittel(Abb. 16a), anschließend wurden die Laufmittelfront und die oberste Bande (Iodkammer) ausgekratzt und unter Verwendung von iso-Propanol/n-Hexan als unpolarem Laufmittel erneut aufgetrennt (Abb. 16b.). Die Inkubationen wurden bei 37°C, Extraktion und Dünnschichtchromatographie bei 22°C und Normaldruck durchgeführt.

Auf trennung in polarem Laufmittel (Chloroform/Methanol/Wasser)

<table>
<thead>
<tr>
<th>Rf-Werte</th>
<th>10min</th>
<th>30min</th>
<th>60min</th>
<th>2h</th>
<th>4h</th>
<th>24h</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,05</td>
<td>303</td>
<td>363</td>
<td>396</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,1</td>
<td>258</td>
<td>248</td>
<td>232</td>
<td>276</td>
<td>192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,14</td>
<td>399</td>
<td>537</td>
<td>737</td>
<td>451</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,28</td>
<td>762</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,5</td>
<td>525</td>
<td>324</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lysophosphatidylcholin</td>
</tr>
<tr>
<td>0,61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phosphatidylinositol</td>
</tr>
<tr>
<td>0,66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phosphatidylcholin</td>
</tr>
<tr>
<td>0,68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Phosphatidsäure</td>
</tr>
<tr>
<td>0,73</td>
<td>494</td>
<td>1245</td>
<td>1348</td>
<td>1341</td>
<td>1239</td>
<td>839</td>
<td></td>
</tr>
<tr>
<td>0,77</td>
<td>799</td>
<td>1470</td>
<td>1664</td>
<td>1731</td>
<td>714</td>
<td>1404</td>
<td></td>
</tr>
<tr>
<td>0,8</td>
<td>799</td>
<td>772</td>
<td>577</td>
<td>1623</td>
<td>1595</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,82</td>
<td></td>
<td>545</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,83</td>
<td>610</td>
<td>404</td>
<td>665</td>
<td>927</td>
<td>1373</td>
<td>1622</td>
<td></td>
</tr>
<tr>
<td>0,87</td>
<td>305</td>
<td>714</td>
<td>986</td>
<td>1256</td>
<td>1304</td>
<td>1577</td>
<td></td>
</tr>
<tr>
<td>0,931</td>
<td>2730</td>
<td>1684</td>
<td>1438</td>
<td>1812</td>
<td>1396</td>
<td>879</td>
<td></td>
</tr>
</tbody>
</table>

Auf trennung in unpolarem Laufmittel (iso-Propanol/n-Hexan)

<table>
<thead>
<tr>
<th>Rf-Werte</th>
<th>10min</th>
<th>30min</th>
<th>60min</th>
<th>2h</th>
<th>4h</th>
<th>24h</th>
<th>Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,08</td>
<td>88</td>
<td>422</td>
<td>661</td>
<td>684</td>
<td>1310</td>
<td>1430</td>
<td></td>
</tr>
<tr>
<td>0,12</td>
<td></td>
<td></td>
<td>378</td>
<td>686</td>
<td></td>
<td></td>
<td>Fettsäure</td>
</tr>
<tr>
<td>0,165</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1102</td>
<td>1327</td>
<td></td>
</tr>
<tr>
<td>0,25</td>
<td>1458</td>
<td>1316</td>
<td>1539</td>
<td>1484</td>
<td>35</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td>0,35</td>
<td>46</td>
<td>60</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,65</td>
<td>41</td>
<td>140</td>
<td>119</td>
<td>239</td>
<td>113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,69</td>
<td></td>
<td>138</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,92</td>
<td></td>
<td>131</td>
<td>352</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aufgenommene Radioaktivität

<table>
<thead>
<tr>
<th>Summe der aufgenommenen Radioaktivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>7541</td>
</tr>
</tbody>
</table>

Die Radiographien zeigen, daß die Palmitinsäure schon nach zehnminütiger Inkubationszeit zu einem erheblichen Teil von den Zellen verstoffwechselt wird. Die Palmitinsäure selbst entspricht wahrscheinlich der Bande bei Rf 0,25 in der Abb. 16b, da dies die Bande ohne zunehmende Tendenz über die Zeit im unpolaren Lösungsmittel ist, auch wenn sie nicht die
gleiche Laufstrecke wie in der unmarkierten Extraktion hat. Eine Zuordnung zu bestimmten Zelllipiden ist nicht möglich. Auch wenn der normale Gehalt an den unterschiedlichen Phospholipiden in Keratinozyten bekannt ist, so ist doch die Aufnahme applizierter Fettsäuren in unterschiedliche Phospholipide so unterschiedlich, daß sich eine Zuordnung auch auf diesem Wege nicht treffen läßt (Shvedova et al. 2001). Anhand der Ergebnisse läßt sich aber aussagen, daß die Aufnahme und die Verstoffwechselung von Fettsäuren in den Keratinozyten ein schneller Prozeß ist, wobei die Menge der aufgenommenen Radioaktivität in mit zunehmender Inkubationsdauer ansteigt und in ihrer Summe nach 24h fast doppelt so hoch ist, wie nach 10 min. Ebenso nimmt die Zahl der Stoffwechselprodukte, die Radioaktivität enthalten, ständig zu, und zwar von 11 Banden nach zehnminütiger auf 20 abgrenzbare Banden bei 24stündiger Inkubation.

4.3. Membranschädigung durch freie ungesättigte Fettsäuren

Abb. 17: Auslaufen des Zytoplasmas: Zellcluster mit Zeichen schwerster Membranschädigung nach Inkubation mit Arachidonsäure 90µM über 45 min (22°C, HBS-Medium)

Weitere Versuche sollten klären, ob es neben lokaler Membranruptur auch zu Veränderungen der Membranpermeabilität für größere Moleküle kommt. Im Kapitel 2.3.2. wurden die theoretischen Grundlagen für die Versuche mit 6-Carboxyfluorescein (6-CF) beschrieben. Nach Vorversuchen mit Linsenepithelzellen testeten wir die Methode an Keratinozyten. In Abbildung 18 ist die Zunahme der Fluoreszenzintensität von Rhodamin (Cell Tracker Orange) bei Anregung des 6-Carboxyfluoresceins, das sich zunächst nur im Außenmedium befand, dargestellt. Nach der Applikation der Linolsäure kam es zu einer deutlichen intrazellulären Fluoreszenzzunahme, die durch räumliche Annäherung der Fluorophore
Rhodamin und Fluoreszein, also durch das Eindringen von 6-CF in die Zellen zustandekommt. Für das 6-Carboxyfluoreszein ist kein Carrierprotein beschrieben, es liegt also nahe, daß das große, hydrophile 6-CF-Molekül über Membrandominuitäten in die Zelle gelangt ist.

![Diagramm](image)

Abb.18: Membranpermeabilisierung: Dargestellt ist ein Versuch mit Mittelwert bei Messung an fünf Zellen und Standardabweichung. Mit Cell Tracker Orange angefärbte Zellen wurden in 6-Carboxyfluoreszeinhaliges Medium überführt und dann mit Linolsäure 42,5μM inkubiert (Pfeil). Der Anstieg der Fluoreszenz bedeutet eine Permeabilisierung, der Abfall in der zweiten Versuchshälfte (ab 11 min) beruht auf einem Leck des Cell Tracker Orange aus der Zelle (Ausfließen von Zytoplasma).

4.4. Wirkung freier Fettsäuren auf den intrazellulären pH Wert

Freie Fettsäuren können den intrazellulären pH-Wert von Zellen beeinflussen. (Chen et al. 2001, Elsing et al. 1996). Die Frage, die sich uns stellte, war, ob dies auch für Keratinozyten gilt, die naturgemäß große Mengen von Fettsäuren aufnehmen, tolerieren und nicht zuletzt auch brauchen (vgl. Kap. 2.2.2.).

4.5. Wirkung freier Fettsäuren und nativer Öle auf die intrazelluläre Konzentration freien Calciums

4.5.1. Auswertung der Versuche nach Lipp et Niggli und Berechnung der Konzentration intrazellulären freien Calciums nach Grynkiewicz

In Abbildung 20 und der folgenden Rechnung ist ein entsprechender Versuch dargestellt. Zunächst wurden die Keratinozyten mit Linolsäure inkubiert und die Fluoreszenz als Maß für die Änderung intrazellulären freien Calciums gemessen. Anschließend wurden die Zellmembranen durch Zugabe von Ionomycin und CCCP permeabilisiert und gleichzeitig das freie Calcium durch den Chelator EGTA gebunden. Dadurch kommt es zu einer Verarmung des intrazellulären Raumes für freie Calciumionen. Man kann die Fluoreszenz der Farbstoffe in nahezu calciumfreiem Milieu messen. Um die maximal mögliche Fluoreszenz zu messen, muß erneut Calcium in großer Menge zur Verfügung gestellt werden. Wir führten hierzu einen Mediumwechsel durch, um eine Bindung des Calciums an EGTA zu verhindern. Die Calciumionenkonzentration des benutzten HBS-Mediums war mit 1mM um mehrere Zehnerpotenzen höher als übliche Konzentrationen intrazellulären freien Calciums, so daß wir ohne weitere Zusätze arbeiteten. Durch Digitoninzugabe erreichten wir eine weitere Permeabilisierung der Zellmembranen, die nach einigen Minuten regelmäßig zur Membranruptur führte.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>△</td>
<td>Zugabe von Linolsäure Finalkonzentration 30 μM</td>
</tr>
<tr>
<td>□</td>
<td>Zugabe von CCCP 6 μM und Ionomycin 30 μM zur Membranpermeabilisierung und EGTA 10 mM zur Bindung freien Calciums zur Messung der minimalen Fluoreszenzintensität R_{Min}</td>
</tr>
<tr>
<td>○</td>
<td>Mediumwechsel zu HBS ohne EGTA</td>
</tr>
<tr>
<td>★</td>
<td>Zugabe von Digitonin 0,6 mg in HBS zur weiteren Membranpermeabilisierung, die im HBS-Medium vorhandene hohe Calciumionenkonzentration wird wegen der Membranpermeabilisierung auch in der Zelle erreicht und ermöglicht die Messung der maximalen Calciumfluoreszenz R_{Max}</td>
</tr>
</tbody>
</table>

$[\text{Ca}^{2+}]_i$ Konzentration intrazellulären freien Calciums

K_D scheinbare Dissoziationskonstante des Farbstoffgemisches aus Fluo3 und Fura-Red nach Lipp et Niggli 1993)

R Tatsächliche Fluoreszenz

R_{Min} Minimale Fluoreszenz (geringstmögliche Konzentration intrazellulären freien Calciums)

R_{Max} Maximale Fluoreszenz (Sättigung der Farbstoffe mit Calcium)

44
\[[\text{Ca}^{2+}]_i = K_D \cdot \frac{(R - R_{\text{Min}})}{(R_{\text{Max}} - R)} \]

\begin{align*}
K_D &= 381 \cdot 10^{-9} \text{ mol/l} \\
R &= 55,06 \\
R_{\text{Min}} &= 28,12 \\
R_{\text{Max}} &= 93,12
\end{align*}

\[[\text{Ca}^{2+}]_i = 381 \cdot 10^{-9} \text{ mol/l} \cdot (55,06 - 28,12)/(93,56 - 55,06) \]

\[[\text{Ca}^{2+}]_i = 266,5 \text{ nmol/l} \]

Beim Gleichsetzen der Fluoreszenz mit einer absoluten Calciumkonzentration ergeben sich aber noch weitere Probleme: Die Konzentration freien Calciums in Zellen ist eine streng regulierte Größe. Es findet ein ständiger und schneller Austausch zwischen gebundenem und freiem Calcium in der Zelle sowie eine Beeinflussung des intrazellulären Calciums durch äußere Faktoren statt (z. B. extrazelluläres Calcium, Membranschäden, die zur Veränderung des transmembranären Calciumgradienten führen). Dabei kann eine Veränderung der Calciumkonzentration aufgrund der geläufigen und inhomogenen Zusammensetzung des Zytoplasmas durchaus lokal begrenzt sein. Dies sollen Fluoreszenzfärnstoffe zur Messung der Calciumkonzentration nicht nur anzeigen, sie dürfen dieses System gleichzeitig nicht stören, zum Beispiel durch Bindung des Calciums in relevantem Ausmaß. Um absolute Calciumkonzentrationen verläßlich messen zu können, dürfen die Farbstoffe selbst nicht
nennenswert in der Zelle verändert werden beziehungsweise Bindungen eingehen, was sie aber in gewissem Maße tun.

Wir entschlossen uns, die prozentuale Fluoreszenzänderung als Versuchsresultat zu bewerten und die Korrelation mit absoluten Calciumkonzentrationen wegen hoher Fehlerraten beziehungsweise Undurchführbarkeit der intrazellulären Kalibrierung nicht generell anzustreben.

4.5.2. Der Einfluß freier Fettsäuren auf die Konzentration intrazellulären freien Calciums ist konzentrationsabhängig

Aufgrund der Tatsache, daß Linolsäure als essentielle Fettsäure besonders für Keratinozyten und die Haut eine herausragende Rolle spielt und für den Aufbau einer funktionierenden Barriere notwendig ist, stellte sich die Frage, ob Keratinozyten im gleichen Maße wie zum Beispiel Lensenepithelzellen durch Linolsäure geschädigt werden. Wir erwarteten einen geringeren zytotoxischen Effekt und orientierten uns in der Wahl der Fettsäurekonzentrationen an den in der Literatur verwendeten (Schürer et al. 1994). Die höchste Fettsäurekonzentration war 170µM, daneben inkubierten wir mit 42,5 und 17µM und ausgewählt mit abweichenden Konzentrationen, die bei den jeweiligen Abbildungen angegeben sind. Die Versuche mit nativen Ölen wurden hauptsächlich mit 170µM (Berechnung über das Molekulargewicht der Mischung) durchgeführt.

In den Abbildungen 21, 22 und 23 sind die Fluoreszenzänderungen als Folge der Applikation ausgewählter Fettsäuren dargestellt.

46

Abb. 22: Konzentrationsabhängiger Einfluß der Applikation von Ölsäure auf die intrazelluläre Calciumkonzentration der Keratinozyten. (20°C, HBS-Medium, Anfärbung mit Fluo3 und Fura-Red, Exzitation 488nm, Detektion bei 525nm und 660nm). Angegeben sind Mittelwert und Standardabweichung (Balken) auf der Grundlage von 17μM: zwei Versuchen mit 2 und 4 Zellen, 43μM: 2 Versuche mit 2 und 3 Zellen, 170μM: drei Versuche mit 2, 3 und 3 Zellen. (p<0,001 ab t<10 min)

Abb. 23: Konzentrationsabhängiger Einfluß der Applikation von Myristinsäure auf die intrazelluläre Calciumkonzentration der Keratinozyten. (Versuchsanordnung analog Abb. 22) Angegeben sind von Mittelwerte aus 2 Versuchen pro Konzentration mit Messungen an je zwei bis fünf einzelnen Zellen und Standardabweichung (Balken). (p>0,05)

In Anbetracht der Tatsache, daß die bei den Versuchen beobachteten Zellzählungen sehr gering sind, erwies sich eine statistische Auswertung als problematisch. Wir können jedoch schlußfolgern, daß es einen Trend gibt, nachdem hohe Konzentrationen von (speziell ungesättigten) freien Fettsäuren eine stärkere Erhöhung der Konzentration von intrazellulären freien Calcium bewirken als mittlere oder niedrige, die ihrerseits kaum einen Einfluß haben.

4.5.3. Einfluß der Kettenlänge und des Sättigungsgrades freier Fettsäuren auf die intrazelluläre Konzentration freien Calciums

 Anders ist das, wenn man freie Fettsäuren unterschiedlichen Sättigungsgrades betrachtet (Abb. 25). Wir führten Inkubationen mit Fettsäuren gleicher Kettenlänge, die keine, ein oder zwei Doppelbindungen im Molekül aufweisen, (Stearin-, Öl- und Linolsäure) durch. Es zeigte sich, daß mit zunehmender Zahl der Doppelbindungen die Erhöhung der freien
Abb. 24: Einfluß der Kettenlänge der verwendeten Fettsäuren (Endkonzentration 170μM, Pfeil) auf die intrazelluläre Calciumkonzentration der Keratinozyten. Darstellung von Mittelwert und Standardabweichung (Balken) Laurinsäure: 2 Versuche je 5 einzelne Zellen, Myristinsäure: 2 Versuche 3 und 4 einzelne Zellen, Stearinsäure: 2 Versuche 6 und 2 einzelne Zellen, Palmitinsäure: 2 Versuche 3 und 5 einzelne Zellen. Versuchsanordnung ansonsten analog Abb. 22. (p>0,05)

Abb. 25: Einfluß des Sättigungsgrades der verwendeten Fettsäuren (Endkonzentration 170μM, ab Pfeil) auf die intrazelluläre Calciumkonzentration der Keratinozyten. Abtragung von Mittelwert und Standardabweichung (Balken).) Stearinsäure: 2 Versuche 6 und 2 einzelne Zellen, Ölsäure: 3 Versuche 2, 2 und 3 einzelne Zellen, Linolsäure: 2 Versuche je 5 einzelne Zellen. Versuchsanordnung ansonsten analog Abb. 22. (p<0,009 ab t<10 min)

4.5.4. Einfluß eines physiologischen Fettsäuregemisches auf die intrazelluläre Calciumkonzentration

Gesättigte freie Fettsäuren führten auch in hohen Konzentrationen nur zu geringen und meist transienten Erhöhungen der intrazellulären Calciumionenkonzentration, während Doppelbindungen im Molekül der freien Fettsäuren eine stärkere Erhöhung bewirkten. In der Literatur gibt es Hinweise, daß freie Fettsäuren im physiologischen Gemisch weniger zellschädigend wirken (Hennig et al. 1993). Wir verwendeten die dort publizierte Zusammensetzung. Dabei fiel auf, daß das physiologische Fettsäuregemisch, das im Anteil 95µM ungesättigte Fettsäuren enthält (siehe Kap. 2.2.2. Tab. 2) eine geringere Wirkung auf die Calciumhomoöostase hatte, als 90µM einer einzelnen ungesättigten Fettsäure (Vergleich mit Linolsäure in Abb. 26).
Abb. 26: Vergleich des Einflusses freier Linolsäure und eines physiologischen Fettsäuregemisches auf die intrazelluläre Konzentration freien Calciums. Untersucht wurden Keratinozyten analog Abb. 22. Als Effektoren wurden Linolsäure 90μM und ein physiologisches Fettsäuregemisch 170μM (Anteil ungesättigter Fettsäuren von 56%) eingesetzt. Angegeben sind Mittelwerte und Standardabweichungen (Linolsäure: 2 Versuche 2 und 3 Zellen, Fettsäuregemisch: 2 Versuche je 5 Zellen. (p<0,005 ab t=20min)

4.5.5. Vergleich zum Einfluß von freien Fettsäuren, einem physiologischen Fettsäuregemisch und pflanzlichen Ölen auf die intrazelluläre Calciumkonzentration

Öle spielen in der Hautpflege eine große Rolle, obwohl sie oft sehr hohe Anteile an ungesättigten, zytotoxischen Fettsäuren enthalten (vgl. Tabelle Öle Kap. 2.2.2.). Anscheinend wirkten sie verestert mit Glycerol (Esterbindungen werden durch membranständige Esterasen nach und nach gespalten) und im Gemisch weniger oder gar nicht zellschädigend.

Um dies zu überprüfen, führten wir Untersuchungen mit ausgewählten Pflanzenölen durch und verglichen sie hier mit entsprechenden Versuchen mit gesättigten und ungesättigten freien Fettsäuren. In der Literatur finden sich Hinweise, daß zum Beispiel veresterte und freie Linolsäure zumindest partiell gegensätzliche Wirkungen auf Keratinozyten haben. Liu und Belury beschrieben 1998, daß freie Linolsäure die intrazelluläre Arachidonsäurekonzentration
Abb. 26: Zusammenstellung der Fettsäure- und Ölversuche mit Calciummessung: Dargestellt ist die Höhe der Fluoreszenz mit calciunsensiblen Farbstoffen (analog Abb. 22) nach einstündiger Inkubation mit der entsprechenden Fettsäure bzw. dem physiologischen Fettsäuregemisch nach Hennig et al. 1993. Mittelwerte über jeweils 2-4 Versuche mit Messungen an je 2-6 einzelnen Zellen. (signifikanter Unterschied zwischen Öl-, Linol- und Arachidonsäure 170µM und allen anderen Säuren in allen Konzentrationen p<0.01)

Abb. 27: Zusammenstellung der Fettsäure- und Ölversuche: Messung der Konzentration des intrazellulären freien Calciums (analog Abb. 22). Die Zellen wurden eine Stunde mit der Fettsäure/ dem Öl inkubiert (170µM). Dargestellt sind die Mittelwerte über jeweils 2-4 Versuche mit Messungen an je 2-6 einzelnen Zellen. (signifikanter Unterschied zwischen Öl-, Linol- und Arachidonsäure 170µM und allen anderen Säuren in allen Konzentrationen p<0.01)

Die Diagramme Abb. 27 und 28 zeigen eine Zusammenstellung der Reaktionen auf alle verwendeten Fettsäuren in je drei Konzentrationen und einen Vergleich aller verwendeter Fettsäuren und Öle bei einer Konzentration von 170µM nach einstündiger Inkubation.

Eine signifikant stärkere Beeinflussung der intrazellulären freien Calciumkonzentration fanden wir nur bei Behandlung mit hohen Konzentrationen ungesättigter freier Fettsäuren im Vergleich zu allen übrigen eingesetzten Effektoren. Diese ihrerseits hatten zwar zum großen Teil eine signifikante Erhöhung der Calciumkonzentration zur Folge, unterschieden sich in dieser jedoch nicht signifikant voneinander.

4.5.6. Einfluß des Kulturalters auf die fettsäureinduzierte Veränderung der intrazellulären Calciumkonzentration

Die Reaktionen der Zellen auf Fettsäuren waren ebenfalls verändert. Insgesamt kann man sagen, daß die Keratinozyten (siehe Diagramme Abb. 29 und 30) mit zunehmendem Kulturalter resistenten gegenüber Fettsäuren wurden.

Abb.28: Abgekugelte Zelle (Pfeil), die dem Bild der üblichen Basalzelle nicht mehr entspricht. Oben Anfärbung mit Fluo-3 und Fura-Red, unten Durchlichtaufnahme. (Keratinozyten über 4 Tage in SFM kultiviert und in HBS überführt)
Abb. 29: Abhängigkeit der Änderung der intrazelluläre Calciumkonzentration auf Linolsäure 90μM vom Kulturalter. (20°C, HBS-Medium, analog Abb. 22). Angegeben sind Mittelwerte und Standardabweichungen. Blauer Graph 3 Tage alte Zellen (2 Versuche, 2 und 4 Zellen), roter Graph 4 Tage alte Keratinozyten (2 Versuche, 3 und 4 Zellen). (p<0,001 ab t=20min)

Abb. 30: Abhängigkeit der Änderung der intrazellulären Calciumkonzentration auf Ölsäure 170μM vom Kulturalter. (20°C, HBS-Medium, analog Abb. 22) Angegeben sind Mittelwerte und Standardabweichungen. Blauer Graph 2 Tage alte Zellen (2 Versuche, 2 und 3 Zellen), roter Graph 4 Tage alte Keratinozyten (2 Versuche, 3 Zellen). (p<0,001 ab t=20min)

Abb. 31: Diagramm eines Einzelversuches: Vier Tage alte Keratinozyten wurden mit 90 μM Linolsäure inkubiert (Pfeil). (20°C, HBS-Medium, analog Abb. 22) Zelle 1 ist die abgekugelte Zelle, Zelle 4 ist die im Beobachtungsfeld weitestmöglich davon entfernte (siehe Abbildung 32).
Abb. 32: Bild der Zellen. Die für das Diagramm (Abb. 31) ausgewählten Areale sind eingezeichnet.

Im Diagramm ist die Reaktion von vier Tage alten Keratinozyten auf Linolsäure dargestellt. Wie im Bild beschrieben, sind Zellen 2-4 in Hinblick auf zunehmenden Abstand zu Zelle 1 ausgewählt. Es zeigt sich, daß Zelle 4 empfindlicher auf die Linolsäure reagiert als Zelle 2. Es scheint, daß der Abstand zu der Zelle 1 ein Faktor für die Reaktionsstärke ist. Möglicherweise ist die morphologische Veränderung dieser Zelle Ausdruck für eine Differenzierung. Diese Vermutung muß jedoch noch in weiteren Versuchen überprüft und geklärt werden, ob die beschriebenen Formveränderungen differenzierungsbedingt sind.

Versuche wurden auch in calciumarmem (HBS ohne Calcium) und calciumfreiem (HBS ohne Calcium mit EDTA) Medium durchgeführt. Die Verwendung von calciumarmem Medium hatte kaum Einfluß auf die Höhe des Calciumsignals (Daten nicht gezeigt), unter calciumfreiem Medium kam es bei vielen Zellen zur Ablösung vom Untergrund, wodurch die Versuche nicht mehr auswertbar wurden (vgl. Thiele 1995).

Da auch hohe Konzentrationen von Fettsäuren Keratinozyten in kurzer Zeit zwar schädigen, aber nicht zum Tod aller Zellen führten, stellte sich uns die Frage, inwieweit einige Zellen diese Behandlung längere Zeit überleben können. Hierzu wurden Dauerinkubationen mit verschiedenen Fettsäuren durchgeführt und mit unbehandelten Zellen gleichen Alters

4.6. Apoptose und Nekrose als Antwort auf die Applikation von freien Fettsäuren

4.6.1. Apoptosedetektion mittels Bestimmung externalisierten Phosphatidylserins

Insgesamt kommen wir, wie in Abb. 33 dargestellt, zu dem Ergebnis, daß ungesättigte Fettsäuren in konzentrationsabhängiger Weise zur Auslösung der Apoptose führen. Bei den Säulen Nummer 1-4 handelt es sich um Kontrollen: zur Nekroseinduktion wurde

<table>
<thead>
<tr>
<th>Säule</th>
<th>Inkubation mit</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Säule 1</td>
<td>Kontrolle unbehandelt</td>
<td></td>
</tr>
<tr>
<td>Säule 2</td>
<td>Alkohol 25%</td>
<td></td>
</tr>
<tr>
<td>Säule 3</td>
<td>Hypoosmolare Lösung (Medium : Aqua = 1:2)</td>
<td>Nekroseauslösung</td>
</tr>
<tr>
<td>Säule 4</td>
<td>C2-Ceramid 10μM</td>
<td>Apoptoseauslösung</td>
</tr>
<tr>
<td>Säule 5</td>
<td>Linolsäure 17 μM</td>
<td></td>
</tr>
<tr>
<td>Säule 6</td>
<td>Linolsäure 42,5 μM</td>
<td></td>
</tr>
<tr>
<td>Säule 7</td>
<td>Linolsäure 170 μM</td>
<td></td>
</tr>
<tr>
<td>Säule 8</td>
<td>Linolsäure 340 μM</td>
<td></td>
</tr>
<tr>
<td>Säule 9</td>
<td>Linolsäure 510 μM</td>
<td></td>
</tr>
<tr>
<td>Säule 10</td>
<td>Palmitinsäure 170 μM</td>
<td></td>
</tr>
<tr>
<td>Säule 11</td>
<td>Physiologische Fettsäuremischung 170 μM</td>
<td></td>
</tr>
<tr>
<td>Säule 12</td>
<td>Hanföl 170 μM</td>
<td></td>
</tr>
</tbody>
</table>

Abb.33.: Im Diagramm ist die Wirkung unterschiedlicher Substanzen (siehe Tabelle) auf die Einleitung von Apoptose und Nekrose dargestellt. Die Zellen wurden eine Stunde mit der jeweiligen Substanz inkubiert (20°C, in HBS-Medium) und dann mit Annexin V-FITC und Propidiumiodid angefärbt. Die Auswertung erfolgte am LSM (Exzitation 488nm, Messung der Emission bei 525nm und 660nm. Auszählung von jeweils 50-100 Zellen aus je 2 Versuchen); Signifikanztestung Säulen 5-9 $\chi^2_{(4/95)}=67,92 (>9,49)$, Signifikanztestung Säulen 7, 10-12 $\chi^2_{(3/95)}=112,37 (>7,81)$
Abb. 34: Ausgewählte Bilder der mit Fettsäuren inkubierten Keratinozyten. Grüne Membranfärbung kennzeichnet die Apoptose, starke Rotfärbung der gesamten Zelle zeigt die Nekrose bzw. sehr späte Apoptose an. Die Zellen wurden für eine Stunde inkubiert mit (a) Linolsäure 42,5 μM, (b) und (c) Linolsäure 170 μM (in HBS, 20°C). Anschließend Färbung mit Annexin-V-FITC und Propidiumiodid (Exzitation bei 488 nm, Messung der Emission bei 525 und 660 nm)
hypoosmolares Medium (ein Teil HBS mit zwei Teilen Wasser), zur Apoptoseauslösung Ceramid (Gniadecki et al. 1998) verwendet.

Analys wurden Versuche mit Arachidonsäure durchgeführt. Wie bei der Linolsäure kommt es bei hohen Konzentrationen zur Apoptose praktisch aller Zellen (Ergebnisse nicht gezeigt). Es ergeben sich signifikante Unterschiede zwischen der Wirkung von Linolsäure gegenüber Palmitinsäure, der physiologischen Mischung und Hanföl und zwischen verschiedenen Linolsärekonkonzentrationen.

Die Trennung zwischen den beiden sich teilweise bedingenden Phänomenen der direkten Zytotoxizität von Fettsäuren und der calciuminduzierten Zellschädigung bleibt Gegenstand weiterer Forschungen.
4.6.2. Nachweis der Kernpyknose

Da es in der Literatur Hinweise gibt, daß die Externalisierung von Phosphatidylserin in einigen Fällen das einzige Apoptosemerkmal ist und daß es zum weiteren Durchlaufen der Apoptose nicht kommt (Shvedova et al. 2002), führten wir punktuell weitere Versuche zur Absicherung der angenommenen Apoptoseinitiation durch. Wie im Kapitel 2.3.5. beschrieben, ändert sich die Kerngröße von Zellen bei Apoptose und Nekrose abhängig vom Zelltodmechanismus. Wir behandelten die Keratinozyten wahlweise mit Linolsäure oder Arachidonsäure und maßen den Kerndurchmesser. Die Ergebnisse sind in Abb. 35 dargestellt, die Abb. 36 zeigt ausgewählte Zellen zu Versuchsbeginn und –ende. Auf die Behandlung mit Linolsäure und Arachidonsäure

![Graphik](image)

Abb. 35: Beobachtung der Kernpyknose nach Behandlung mit Linolsäure und Arachidonsäure 42,5µM (Pfeil) (HBS-Medium, 20°C). Anfärbung mit HOECHST 33342 und Messung der Kernfläche. Dargestellt sind Mittelwerte und Standardabweichungen zweier Versuche mit 4 (Linolsäure) und 5 (Arachidonsäure) Zellen. (p=0.03 zwischen Anfangs- und Endgröße; signifikante Unterschiede zwischen Arachidonsäure- und Linolsäurewirkung bestehen nicht.)

Linolsäure vermuten. Diese Ergebnisse decken sich mit denen der Annexin-FITC-Versuche (siehe Kapitel 4.6.1.), bei denen die gleichen Säurekonzentrationen häufig zur Apoptose führten.

Abb. 36: Kernpyknose. Ausgewählte Zellen vor (oben) und 80min nach (unten) Applikation von Linolsäure 42,5µM (in HBS, 20°C, Anfärbung mit HOECHST 33342)
5. Zusammenfassung

Untermauert werden diese Ergebnisse durch den Nachweis der Kernpyknose als Reaktion auf ungesättigte Fettsäure am Beispiel von Arachidon- und Linolsäure.

6. Literaturverzeichnis

67
40. Erdahl WL, Chapman CJ, Taylor RW, Pfeiffer DR: Effects of pH conditions on Ca2+ transport catalyzed by ionophores A23187, 4-BrA23187, and ionomycin suggest problems with common applications of these compounds in biological systems. Biophys J 69 (1995) 2350-2363

98. LSM 410 invert – Herstellerbeschreibung der Firma Zeiss, Jena

74

6.1. Quellennachweis der Abbildungen

Abb. 4: http://www.ifremer.fr/drvpbm/images/phospholipides.jpg
Abb. 8,9,10: www.molecularprobes.com/handbook/sections/2000/html
Abb.2: http://www.mpi-magdeburg.mpg.de/research/project_c/pro_c1/img9.gif
Abb.3: www.omega.dawsoncollege.gc.ca/ray/cellmemb/401memb.htm
Abb. 11: http://208.7.154.206/gmoyna/biochem341/lecture30.html
Abb. 12: http://www2.a-m-i.co.jp/daiichi-p/apopto.html
Abb.13: www.udel.edu/Biology/Wags/ b667/lect7/lect7.htm
Abb. 14: POC- Produktinformation Bachofer Reutlingen 1995
7. Thesen

1. HaCaT-Zellen (Human Adult low Calcium high Temperature Keratinocytes) sind spontan immortalisierte, nicht tumorigene Keratinozyten aus humaner Epidermis. Sie wachsen adhären und können sich differenzieren. Für die Versuche wurden subkonfluente Kulturen verwendet, um wenig differenzierte Zellen zu untersuchen.

Parinarsäure ist eine Fettsäure mit vier konjugierten Doppelbindungen, die in hydrophober Umgebung fluoresziert. Sie ist ein gutes Werkzeug, den Transport von Fettsäuren durch die Membran zu beobachten.

3. Der Umbau freier Fettsäuren ist ebenfalls ein schneller Prozeß. Nach Applikation von freier \(^{14}\)C-Palmitinsäure kann die Radioaktivität bereits nach zehn Minuten in elf verschiedenen Lipidfraktionen nachgewiesen werden.

8. Die Applikation freier Fettsäuren und nativer Öle führt zu einem Anstieg der intrazellulären Calciumionenkonzentration. Dessen Ausmaß war abhängig von

 - der Konzentration der gewählten Fettsäure, wobei eine höhere Fettsäurekonzentration einen höheren Anstieg bewirkte.

 - dem Kulturalter der Keratinozyten. Ältere Keratinozyten waren unempfindlicher gegenüber Fettsäuren, der Anstieg der intrazellulären Calciumionenkonzentration war bei ihnen geringer.

Die Kettenlänge der verwendeten Fettsäure hatte keinen Einfluß auf die Höhe der Änderung der Calciumkonzentration. Ebenso ist der Anstieg der intrazellulären Calciumkonzentration bei gesättigten Fettsäuren, einer physiologischen Fettsäuremischung mit einem Anteil ungesättigter Fettsäuren von 56% und nativen Ölen mit Anteilen ungesättigter Fettsäuren von bis ca. 90% etwa gleich.

9. Es bestehen Hinweise für parakrine Effekte innerhalb größerer Zellhaufen, wobei größere, weniger flache, möglicherweise differenziertere Keratinozyten umliegende Zellen zu beeinflussen scheinen. Dabei ist die Änderung der intrazellulären Calciumionenkonzentration um so geringer, je geringer der Abstand zwischen der betrachteten Zelle und der fraglich differenzierteren Zelle ist.

Nach Applikation mittlerer Konzentrationen (42,5µM) von Arachidonsäure und Linolsäure kommt es häufig zur Kernpyknose als Zeichen der eingeleiteten Apoptose.

11. Langzeitinkubationen mit hohen Konzentrationen von Fettsäuren zeigen, daß:

- hohe Konzentrationen von Linolsäure zum Tode vieler, aber nicht aller HaCaT-Zellen führen – einige sind auch nach fünf Tagen noch vital und unterscheiden sich morphologisch nicht von unbehandelten Zellen.

- hohe Konzentrationen von gesättigten Fettsäuren keinen Einfluß auf das Wachstum und die Morphologie der Zellen haben.

Lebenslauf

Angaben zur Person

Name: Bettina Kuhnt
Wohnort: Alte Paulsbreite 1
06779 Raguhn
Geburtsort: Zerbst
Familienstand: ledig

Ausbildung

9/1990-6/1993 Gymnasium Wolfen-Stadt
6/1993 Abitur
Martin-Luther-Universität Halle-Wittenberg
5/2000 Ärztliche Prüfung

Berufstätigkeit

7/2000-1/2002 ÄiP in der Klinik für Kinderheilkunde und Klinik für
Kinderkardiologie der Martin-Luther-Universität Halle-
Wittenberg
1/2002-3/2002 Assistenzärztin in der Kinderklinik der
seit 12/2002 Martin-Luther-Universität Halle-Wittenberg

Halle, den 25.03.2003
Erklärung

Ich erkläre außerdem, dass ich zum ersten Mal eine Arbeit zur Promotion vorlege. Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde eingereicht.

Bettina Kuhnt
Danksagung

Hiermit möchte ich danken

Herrn Prof. Dr. habil. D. Gläßer für die Überlassung des interessanten Themas.

Herrn Prof. Dr. habil. W. Wohlrab für die Beratung, insbesondere bezüglich der Keratinozyten, und die Ermöglichung der Versuche an HaCaT-Zellen.

Herrn Dr. D. Glanz für die theoretische und praktische Betreuung der Arbeit, für sein stets offenes Ohr, die zahlreichen Anregungen und nicht zuletzt für die schnellen Korrekturen.

Frau K. Hölsken und Frau M. Schmidt für die Versorgung mit kultivierten HaCaT-Zellen für die Experimente und ihre tatkräftige Unterstützung bei den in der Klinik für Haut- und Geschlechtskrankheiten durchgeführten Versuchen.

Frau A. Wolter für die Mithilfe bei der praktischen Umsetzung der Calciummessungen.

Herrn Dr. M. Trimborn für seine Hilfe bei der Durchführung der Lipidextraktionen mit radioaktiv markierter Palmitinsäure und viele Tips zur Dünnschichchromatographie.

Frau K. Manikowski für ihre Ausdauer und Kompetenz bei der statistischen Auswertung und beim Korrekturlesen und besonders für ihre stete Hilfsbereitschaft und Freundschaft.

der Arbeitsgruppe von Herrn Dr. U. Rothe für die Überlassung von Labormaterialien.

Frau Dr. B. Lennarz, Frau Dr. C. Stützer, Frau Dr. D. Gerlach, Frau C. Temme, Herrn Dr. K. Lennarz und Herrn Dr. J.-U. Lechner für die zahlreichen anregenden Diskussionen.

Herrn N. Muthmann, Herrn S. Brand und Herrn D. Bormke für tatkräftige Hilfe bei PC-Problemen.

und meinen Eltern, ohne die es nie so weit gekommen wäre.
Publikationen
