Appendix A

The phase diagram was estimated using the data given by Druz et. al.[114] in Table 2 of their publication about the miscibility of PE/EVA blends.

\[M_{\text{PE}} = 100\,000 \text{ g/mol}, \quad M_{\text{0PE}} = 28, \quad N_1 \sim 3571 \]

\[M_{\text{EVA}} = 15\,500 \text{ g/mol}, \quad M_{\text{0EVA}} = 42, \quad N_2 \sim 370 \]

\(N_1 \) and \(N_2 \) are the degree of polymerization.

The dependence of the existent phases in the PE/EVA blends on molar mass of PE (\(M_{\text{PE}} \)) is given by the following equations[114]:

\[\Phi_1' = \Phi_{1\infty} + \frac{k'}{M} \quad \text{and} \quad \Phi_1'' = \Phi_{1\infty} + \frac{k''}{M} \] (A-1)

where \(\Phi_1' \) and \(\Phi_1'' \) are the volume fractions at equilibrium.

The extrapolation allows to determine the phases at the temperature of the experiment and the solubility of the components (PE and EVA) at \(M \to \infty \).

We assume that the interaction parameter \(\chi \) is:

\[\chi = A + \frac{B}{T} \]

Therefore, (in rough approximation) according to Ref. 114:

\[\chi = -0.03 + \frac{14.25}{T} \] (A-2)

\(\chi_{393} = 6.3 \times 10^{-3} \) and \(\chi_{433} = 2.9 \times 10^{-3} \) are the binary interaction parameters at temperatures of 393 and 433 K respectively.

After Flory-Huggins approximation (see Appendix B): \(\Phi_{1\infty} \propto \frac{1}{\chi} \) and \(\Phi_{1\infty}' \propto \frac{1}{\chi} \). Hence, we assume temperature dependence of these quantities and the coefficients \(k' \) and \(k'' \):

\[\Phi_{1\infty}' = \frac{\alpha' + \beta'T}{\chi} \quad \text{and} \quad k' = a' + \frac{b'}{T} \]

which results in:

\[\Phi_{1\infty}' = \frac{-3.55 + 0.02T}{10^4 \chi} \quad \Phi_{1\infty}'' = \frac{-6.14 + 0.0166T}{10^4 \chi} \] (A-3)

\[k' = 0.0288 + \frac{212.7}{T} \quad k'' = -0.805 + \frac{251.0}{T} \]
where χ is given by Equation (A-2). The phase compositions can be calculated by using Equations (A-1) – (A-3).

Appendix B

Flory-Huggins (FH) approximation:

\[
\frac{\Delta \mu_1}{RT} = \ln \frac{\phi}{N_1} + \left(1 - \phi \right) \left(\frac{1}{N_1} - \frac{1}{N_2} \right) + \chi (1 - \phi)^2 \tag{B-1}
\]

\[
\frac{\Delta \mu_2}{RT} = \ln \left(1 - \phi \right) - \phi \left(\frac{1}{N_1} - \frac{1}{N_2} \right) + \chi \phi^2 \tag{B-2}
\]

where $\Delta \mu_1$ and $\Delta \mu_2$ are the chemical potential of PE and EVA.

There is phase equilibrium when:

$\Delta \mu_1 = \Delta \mu_1^*$ and $\Delta \mu_2 = \Delta \mu_2^*$ \hspace{1cm} (B-3)

Using (B-1) and (B-2), the first equation of (B-3) refers to $N_1 \to \infty$

\[-\left(1 - \phi^* \right) + N_2 \chi (1 - \phi^*)^2 = -\left(1 - \phi^* \right) + N_2 \chi (1 - \phi^*)^2 \] and the solution of this equation is:

\[1 - \phi^* = \frac{1}{N_2 \chi}(1 - \phi^*) \tag{B-4}\]

By using (B-4) we obtain the second equation of (B-3):

\[
\ln \left[\frac{1 - \chi N_2 (1 - \phi^*)}{\chi N_2 (1 - \phi^*)} \right] = 2 \left[1 - 2 \chi N_2 (1 - \phi^*) \right] \tag{B-5}
\]

which leads to: $\chi N_2 (1 - \phi^*) = 0.5$

N_1 and N_2 are degree of polymerization of PE and EVA respectively.