5. References


Acharya, A., and Taniuchi, H., Reduction and renaturation of hen egg lysozyme containing carboxymethylcysteine-6 and –127 (1978), Biochemistry 17, 3064-3070


Ahmed, A., Schaffer, S., and Wetlaufer, D., Nonenzymic reactivation of reduced bovine pancreatic ribonuclease by air oxidation and by glutathione oxidoreduction buffers (1975), J. Biol. Chem. 250, 8477-8482

Anfinsen, C., Principles that govern the folding of protein chains (1973), Science 181, 223-230


Arakawa, T., Bhat, R., and Timasheff, S., Why preferential hydration does not always stabilize the native structure of globular proteins (1990), Biochemistry 29, 1133-1143

Bernstein, H., Recent changes to RasMol, recombining the variants (2000), Trends Biochem. Sci. 25, 453-455


Bhat, R., and Timasheff, S., Steric exclusion is the principal source of the preferential hydration of proteins in the presence of polyethylene glycols (1992), Protein Sci. 1, 1133-1143


Buchner, J. and Rudolph, R., Renaturation, purification and characterization of recombinant Fab-fragments produced in Escherichia coli (1991), *Bio/Technology* 9, 202-207

Chan, H., and Dill, K., Protein folding in the landscape perspective: chevron plots and non-Arrhenius kinetics (1998), *Proteins* 30, 2-33


Creighton, T., How important is the molten globule for correct protein folding? (1997), *Trends Biochem Sci.* 22, 6-10


Epstein, C., and Goldberger, R., A study of factors influencing the reactivation of reduced egg white lysozyme (1963), *J. Biol. Chem.* 238, 1380-1383


Goldberg, M., Rudolph, R., and Jaenicke, R., A kinetic study of the competition between renaturation and aggregation during the refolding of denatured-reduced egg white lysozyme (1991), *Biochemistry* **30**, 2790-2797


Kuwajima, K., The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure (1989), *Proteins* **6**, 87-103


Lin, W., and Traugh, J., Renaturation of casein kinase II from recombinant subunits produced in Escherichia coli: purification and characterization of the reconstituted holoenzyme (1993), *Protein Express. Purific.* **4**, 256-264


Nieba, L., Honegger, A., Krebber, C., and Plückthun, A., Disrupting the hydrophobic patches at the antibody variable/constant domain interface: improved in vivo folding and physical characterization of an engineered scFv fragment (1997), Prot. Eng. 10, 435-444


Radford, S., Dobson, C., and Evans, P., The folding of hen lysozyme involves partially structured intermediates and multiple pathways (1992a), Nature 358, 302-307


Roux, P., Ruoppolo, M., Chafoffe, A., and Goldberg, M., Comparison of the kinetics of S-S bond, secondary structure, and active site formation during refolding of reduced denatured hen egg white lysozyme (1999), Prot. Sci. 8, 2751-2760

Rudolph, R., Fischer, S., and Mattes, R., Verfahren zur Aktivierung von t-PA nach Expression in Prokayonten (process for the activation of t-PA after expression in procaryotic cells) (1985a) German patent DE3537708

Rudolph, R., Fischer, S., and Mattes, R., Process for activating heterologous, eucaryotic proteins genetically engineered and presenting disulphide bridges after their expression in procaryotic cells (1985b) European patent P3537708.9

Rudolph, R., Fischer, S., and Mattes, R., Process for the activation of t-PA or Ing after genetic expression in prokaryotes (1995) U.S. patent 5453363


Schade, B., Rudolph, R., Ludemann, H., and Jaenicke, R., Reversible high-pressure dissociation of lactic dehydrogenase from pig muscle (1980), Biochemistry 19, 1121-1126


St John, R., Carpenter, J., Balny, C., and Randolph, T., High pressure refolding of recombinant human growth hormone from insoluble aggregates (2001), Structural transformations, kinetic barriers, and energetics, *J. Biol. Chem.* **276**, 46856-46863


Tanford, C., Protein denaturation (1968), *Adv. Protein Chem.* **23**, 121-282


Uversky, V., Winter, S., and Lober, G., Use of fluorescence decay times of 8-ANS-protein complexes to study the conformational transitions in proteins which unfold through the molten globule state (1996), *Biophys. Chem.* **60**, 79-88


Xie, G., and Timasheff, S., Mechanism of the stabilization of ribonuclease A by sorbitol: preferential hydration is greater for the denatured than for the native protein (1997c), *Protein Sci.* **6**, 211-221


Yoshioka, K., KyPlot download site: http://www.woundedmoon.org/win32_freeware.html