The Metallogenesis of the Skorpion Non-Sulphide Zinc Deposit, Namibia

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der

Mathematisch-Naturwissenschaftlich-Technischen Fakultät
(mathematisch-naturwissenschaftlicher Bereich)
der Martin-Luther-Universität Halle-Wittenberg

von Frau Katrin Kärner

tätig am 21.09.1973 in Halberstadt

Gutachter:

1. Prof. Dr. Gregor Borg
2. Prof. Dr. Murray Hitzman

Halle (Saale), 04. Juli 2006

urn:nbn:de:gbv:3-000011368
[http://nbn-resolving.de/urn/resolver.pl?urn=nbnt3ade%3Agbv%3a3-000011368]
Acknowledgements

Above all, I would like to thank both the Geological Department of the Martin Luther University Halle-Wittenberg (MLU) and Anglo American (AAC) for providing the resources and funding for research throughout this PhD.

There are also lots of people I would like to thank for a huge variety of reasons.

Firstly, I would like to thank my supervisor Gregor Borg. His vast experience and knowledge of southern Africa opened many doors that may otherwise have remained closed. Without his continual support and encouragement over the last few years I would not have been able to accomplish this work, nor would I have experienced kite flying in the desert. Thanks a lot.

To all my colleagues at the institute that kept the working climate light, progressive and insightful, I thank you for your constant support and ceaseless encouragement.

Although I have thanked Anglo American in general, I would like to personally thank Roy Corrans for initiating this research project, Nick Franey, Ian Willis and Mike Buxton and the staff of the Anglo Exploration Division for their support and encouragement. The discussions and workshops in Johannesburg and at the Skorpion mine site were very inspiring and contributed greatly to my understanding of the Skorpion deposit and non-sulphide zinc deposits in general.

Early thanks go to Eckardt Freyer, Ken Hart and Karl Hartmann of Ambase Exploration Namibia, for introducing me to the Skorpion geology and for the enjoyable time I spent with them at the Exploration camp during the field campaigns.

From Anglo’s Skorpion Zinc Mine, Dirk Harney, Senior Mine Geologist, and his family made life for me in Rosh Pinah enjoyable, with occasional “Doppelkopf” evenings which included Marcus Schafer, exploration geologist and card player extraordinaire. On the work front though, Dirk was invaluable. His genuine interest and continual motivation, even after his departure from Skorpion, helped ratify a belief in myself that carries on today. He also afforded me the opportunity to work in a practical manner on the mine, which led to a deeper understanding of the Skorpion ore body. At this point I also would like to thank Jaco Engelbrecht and Rob Botha, who provided many stimulating discussions about the genesis of the Skorpion deposit.

Thanks to Thomas Oberthür and his team from the Federal Institute for Geosciences and Natural Resources in Hanover, for their provision of resources and incredible generosity during my electron microprobe studies.
I would also like to thank Harald Strauss at the University of Munster and Albert Gilg at the Technical University of Munich for carrying out the stable isotope analyses.

Special thanks go to my dear friend Uwe, who more than anyone else in the world, held me together when I needed to be held together and prescribed ‘obliteration’ when that was the medicine required, at that time, to see this journey to its end.

Much appreciation goes to my family, who have been very tolerant over the years and never doubted me, even when my recurring claims of ‘I’ll be finished soon’, ensued for more than the allotted time that the word ‘soon’ implies.

Finally, I thank a special Aussie just for being him.

Swakopmund, February 2006
Table of Contents

Table of Mineral Names and Formulas 1

Summary 2

1 Introduction 2

1.1 Non-sulphide Zinc Deposits Worldwide 2

1.2 Purpose and Scope of this Study 6

1.3 Outline of this Study 6

1.4. Methodology 7

1.4.1 Sampling 7

1.4.2 Analytics 7

1.4.3 GIS work 9

1.5 Previous Work 10

2 Regional Geological Setting 12

2.1 Introduction 12

2.2 Gariep Belt 13

2.2.1 Geological Framework 13

2.2.2 Tectonic Evolution 14

2.2.3 Stratigraphy and Lithology 15

3 The Skorpion Deposit 19

3.1 Exploration and Mining History 19

3.2 Geographical Overview 19
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1 Present Geomorphology</td>
<td>19</td>
</tr>
<tr>
<td>3.2.2 Climate and Vegetation</td>
<td>20</td>
</tr>
<tr>
<td>3.3 Geological Framework</td>
<td>21</td>
</tr>
<tr>
<td>3.4 Lithology of Host Rocks</td>
<td>23</td>
</tr>
<tr>
<td>3.5 Petrography and Geochemistry of Host Rock and Wall Rock Lithotypes</td>
<td>26</td>
</tr>
<tr>
<td>3.5.1 Pre-Gariepian Basement</td>
<td>26</td>
</tr>
<tr>
<td>3.5.2 Gariepian Cover Rocks</td>
<td>27</td>
</tr>
<tr>
<td>3.5.2.1 Introduction</td>
<td>27</td>
</tr>
<tr>
<td>3.5.2.2 Marble</td>
<td>28</td>
</tr>
<tr>
<td>3.5.2.2.1 Petrography</td>
<td>28</td>
</tr>
<tr>
<td>3.5.2.2.2 Geochemistry</td>
<td>30</td>
</tr>
<tr>
<td>3.5.2.3 Felsic Metavolcanic Rocks</td>
<td>32</td>
</tr>
<tr>
<td>3.5.2.3.1 Petrography</td>
<td>32</td>
</tr>
<tr>
<td>3.5.2.3.2 Geochemistry</td>
<td>36</td>
</tr>
<tr>
<td>3.5.2.4 Amphibolites</td>
<td>44</td>
</tr>
<tr>
<td>3.5.2.4.1 Petrography</td>
<td>44</td>
</tr>
<tr>
<td>3.5.2.4.2 Geochemistry</td>
<td>45</td>
</tr>
<tr>
<td>3.5.2.5 Metasiliciclastic Rocks</td>
<td>49</td>
</tr>
<tr>
<td>3.5.2.5.1 Petrography</td>
<td>49</td>
</tr>
<tr>
<td>3.5.2.5.2 Geochemistry</td>
<td>54</td>
</tr>
<tr>
<td>3.6.3 Covering Sediments</td>
<td>63</td>
</tr>
<tr>
<td>3.7 Ore Minerals, Textures, and Styles of Mineralisation</td>
<td>65</td>
</tr>
<tr>
<td>3.7.1 Introduction</td>
<td>65</td>
</tr>
<tr>
<td>3.7.2 The Shape of the Supergene Ore Body</td>
<td>66</td>
</tr>
<tr>
<td>3.7.3 Primary Hypogene Ore Minerals</td>
<td>69</td>
</tr>
<tr>
<td>3.7.4 Secondary Supergene Ore Minerals</td>
<td>72</td>
</tr>
<tr>
<td>3.7.4.1 Supergene Sulphide Minerals</td>
<td>72</td>
</tr>
<tr>
<td>3.7.4.2 Supergene Non-Sulphide Minerals</td>
<td>75</td>
</tr>
<tr>
<td>3.7.4.2.1 Sauconite</td>
<td>75</td>
</tr>
<tr>
<td>3.7.4.2.2 Hemimorphite</td>
<td>76</td>
</tr>
<tr>
<td>3.7.4.2.3 Smithsonite</td>
<td>77</td>
</tr>
</tbody>
</table>
3.7.4.2.4 Hydrozincite 81
3.7.4.2.5 Zn-bearing Phosphates 81
3.7.4.2.6 Cu-bearing Minerals 82
3.7.4.2.7 Manganese Oxides 83
3.7.4.2.8 Iron Hydroxides 83

3.8 Rock Weathering and the Formation of the Supergene Ore 88

3.8.1 Weathering and Profile Development 88
3.8.2 Parent Rock and Profile Development 89
 3.8.2.1 Dissolution of Sulphides from Host Rocks 89
 3.8.2.2 Dissolution of Calcite 91
 3.8.2.3 Dissolution of Feldspar 92
 3.8.2.4 Dissolution of Mica 94
 3.8.2.5 Dissolution of Apatite 94
 3.8.2.6 Precipitation of Supergene Ore Minerals 95
 3.8.2.6.1 Solubility of Metals 95
 3.8.2.6.2 Supergene Metal Zonation Pattern 96
 3.8.2.6.3 Supergene Mineral Zonation Pattern 101

3.9 Climate Regime and Development of the Weathering Profile 105

3.10 Geomorphology and Development of the Weathering Profile 106
 3.10.1 Regional Geomorphological Evolution 106
 3.10.2 Geomorphological Evolution and Development of the Weathering Profile at the Skorpion Deposit 112

4 Conclusions 119

References 123
List of Mineral Names

atacamite \(\text{Cu}_2\text{Cl(OH)}_3 \)
barite \(\text{BaSO}_4 \)
brunckite \(\text{ZnS} \)
chalcopyrite \(\text{CuFeS}_2 \)
chalcocite \(\text{Cu}_2\text{S} \)
chalcopyhanite \((\text{Zn, Fe, Mn})\text{Mn}_3\text{O}_7\cdot3\text{H}_2\text{O} \)
chrysocolla \(\text{CuSiO}_3\cdot\text{nH}_2\text{O} \)
galena \(\text{PbS} \)
goethite \(\text{FeOOH} \)
gorceixite \(\text{BaAl}_3(\text{PO}_4)_2(\text{PO}_3\text{OH})(\text{OH})_6 \)
greenockite \(\text{CdS} \)
hematite \(\text{Fe}_2\text{O}_3 \)
hemimorphite \(\text{Zn}_4\text{Si}_2\text{O}_7(\text{OH})_2\cdot\text{H}_2\text{O} \)
hydrozincite \(\text{Zn}_6(\text{OH})_6(\text{CO}_3)_2 \)
hydrohetearolite \(\text{Zn}_2\text{Mn}_4\text{O}_8\cdot\text{H}_2\text{O} \)
magnetite \(\text{Fe}_3\text{O}_4 \)
malachite \(\text{Cu}_2(\text{CO}_3)(\text{OH})_2 \)
manganomelane synonym of wad (generic name for Mn oxides/hydroxides)
psilomelane barium manganese oxide hydroxide (no fixed formula)
pyrite \(\text{FeS}_2 \)
pyrrhotite \(\text{Fe}_{1+x}\text{S} \quad (x = 0 \text{ to } x = 0.2) \)
sauconite \(\text{ZnAl}[\text{(OH)}_2 /\text{AlSi}_3\text{O}_{10}] \quad (0.5 \text{ Ca, Na})_{0.5}(\text{H}_2\text{O})_4 \)
scholzite \(\text{CaZn}[\text{PO}_4]_2\cdot2\text{H}_2\text{O} \)
skorpionite \(\text{Ca}_2\text{Zn}_2(\text{PO}_4)_2\text{CO}_3(\text{OH})_2\cdot\text{H}_2\text{O} \)
sphalerite \(\text{ZnS} \)
smithsonite \(\text{ZnCO}_3 \)
tarbuttite \(\text{Zn}_2[\text{OH}/\text{PO}_4] \)
zincolebithenite \(\text{CuZn}(\text{PO}_4)\text{OH} \)
Summary

The supergene Skorpion non-sulphide zinc deposit is located approximately 40 km north of the Orange River in the southernmost Namib Desert, Namibia. It comprises a significant non-sulphide ore body (24.6 Mt @ 10.6 % Zn) and subordinate amounts of primary hypogene base metal sulphide mineralisation, which underlies the non-sulphide ores at depth. The mining commenced in October 2001 with the stripping of the overburden and exposure of the ore body.

The present metallogenic study is based mainly on drill core data from Anglo American's exploration drilling programme in 1999, since the study and the sampling for it was initiated prior to the opening of the mine. Investigations carried out on drill core samples include: i) light microscopy, XRD, and SEM-EDX in order to determine the mineralogy, ii) XRF, ICP-MS, electron microprobe technique and stable isotope analyses in order to determine the geochemistry of the ore body and its host rocks. Additionally, geochemical results from the exploration and infill drilling programme of the Skorpion Mine in 2004 were used in order to describe the supergene metal zonation pattern.

The Neoproterozoic host rocks of the Skorpion deposit are part of a volcano-sedimentary rock sequence within the Gariep Belt. The Neoproterozoic sequence has been affected by upper greenschist-/lowermost amphibolite metamorphism as well as complex deformation, which has resulted in folding and intensive thrusting during the Pan-African Orogeny at approximately 550 – 545 Ma. This event was followed by low-temperature retrograde metamorphism, uplift, fracturing, near-surface and surface weathering. The latter resulted in the formation of the supergene zinc deposit at Skorpion.

The hypogene Late Proterozoic hybrid VH(M)S/SH(M)S Zn-(Cu) protore of the Skorpion non-sulphide zinc ore body has formed in an initial continental rift system between the Kalahari cratonic province and the Rio de la Plata cratonic province. Bi-modal volcanism, anomalously high heat flow and hydrothermal activity have been significant controls for the hypogene ore formation. The Late Proterozoic rift sequence also contains siliciclastic and carbonate sediments, which were deposited in both shallow and deeper water environments.

The supergene non-sulphide ores have formed by oxidation of the base metal sulphide protore by wall rock replacement and in-situ oxidation. The non-sulphide ore minerals comprise predominantly sauconite (Zn-smectite), substantial amounts of hemimorphite and smithsonite, and subordinate amounts of hydrozincite, tarbuttite and chalcophanite. The supergene ore minerals form mainly euhedral and subhedral crystals and occur as open space fillings in inter- and intragranular voids, fractures and breccias.

The supergene non-sulphide ore body is hosted mainly by metasiliciclastic rocks, which are composed of meta-arkoses and –subarkoses, and subordinately by felsic metavolcanic rocks and their volcaniclastic equivalents. The ore body is irregularly shaped, transgressive to sedimentary layering and major tectonic features. It displays a relatively flattop, which is covered by a blanket of unmineralised overburden consisting of alluvial sediments, calcrete and Recent sand dunes.

The supergene ore body is laterally zoned displaying a pronounced supergene lateral metal zonation pattern, which has developed as a result of differences in metal solubilities. Iron and copper zones represent the leached part of the supergene ore body that corresponds to the location of the sulphide protore. The more mobile zinc has precipitated away from the iron and copper zones forming a markedly supergene zinc enrichment zone.

Even if the non-sulphide ore body and its lateral metal zonation are transgressive to a major Mesozoic fault system, the supergene deposit is partly controlled by it. The fault system
opened abundant dilatational joints and fractures, which increased the permeability of the host rocks. Thus, meteoric fluids were channeled and were able to percolate along the fault system and to oxidise the hypogene sulphide ores to several hundreds of meters depth. Palaeo-morphological features and palaeo-climatic conditions indicate that the supergene ore body must have formed during Early Tertiary. Subsequently, the uppermost part of the Skorpion ore body has been eroded and alluvial sediments have been deposited on top of the erosional palaeo-surface in Late Tertiary.