7 REFERENCES

11. Bienstock RJ, Barrett JC. KAI1, a prostate metastasis suppressor: prediction of solvated structure and interactions with binding partners; integrins, cadherins and cell-surface receptor proteins. Mol Carcinog 32 (2001) 139–153

17 Cannon KS, Cresswell P. Quality control of transmembrane domain assembly in the tetraspanin CD82. EMBO J 20 (2001) 2443-2453
26 Dumont JA, Bitonti AJ. Modulation of human melanoma cell metastasis and adhesion may involve integrin phosphorylation mediated through protein kinase C. Biochem Biophys Res Commun 204 (1994) 264-272
31 Escribano L, Orfao A, Diaz Agustin B et al. Human bone marrow mast cells from indolent systemic mast cell disease constitutively express increased amounts of the CD63 protein on their surface. Cytometry 34 (1998) 223-228

40 Grant CS, Hay ID, Gough IR et al. Local recurrence in papillary thyroid carcinoma: is extent of surgical resection important? Surgery 104 (1988) 954-962

41 Guo X, Friess H, Graber HU et al. KAI1 expression is up-regulated in early pancreatic cancer and decreased in the presence of metastasis. Cancer Res 56 (1996) 4876-4880

53 Ito Y, Uruno T, Takamura Y et al. Papillary microcarcinomas of the thyroid with preoperatively detectable lymph node metastasis show significantly higher aggressive characteristics on immunohistochemical examination. Oncology 68 (2005) 87-96

56 Jackson P, Kingsley EA, Russell PJ. Inverse correlation between KAI1 mRNA levels and invasive behaviour in bladder cancer cell lines. Cancer Lett 156 (2000) 9-17

64 Lagaudriere-Gesbert C, Lebel-Binay S, Hubeau C et al. Signaling through the tetraspanin CD82 triggers its association with the cytoskeleton leading to sustained morphological changes and T cell activation. Eur J Immunol 28 (1998) 4332–4344

72 Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med 97 (1994) 418-428

80 Ng T, Shima D, Squire A et al. PKCalpha regulates beta1 integrin-dependent cell motility through association and control of integrin traffic. EMBO J 18 (1999) 3909-3923.
82 Nojima Y, Hirose T, Tachibana K et al. The 4F9 antigen is a member of the tetraspans transmembrane protein family and functions as an accessory molecule in T cell activation and adhesion. Cell Immunol 152 (1993) 249–260
102 Shaw LM, Messier JM, Mercurio AM. The activation dependent adhesion of macrophages to laminin involves cytoskeletal anchoring and phosphorylation of the alpha 6 beta 1 integrin. J Cell Biol 110 (1990) 2167-2174
112 Symons M, Derry JM, Karlak B et al. Wiskott-Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 84 (1996) 723-734

116 Tsukita S, Oishi K, Akiyama T et al. Specific proto-oncogenic tyrosine kinases of src family are enriched in cell-to-cell adherens junctions where the level of tyrosine phosphorylation is elevated. J Cell Biol 113 (1991) 867-879

119 Voutilainen PE, Multanen MM, Leppäniemi AK et al. Prognosis after lymph node recurrence in papillary thyroid carcinoma depends on age. Thyroid 11 (2001) 953-957

130 Zhang XA, Bontrager AL, Hemler ME. Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC) and link PKC to specific β1 integrins. J Biol Chem 276 (2001) 25005–25013

133 Zhang XA, Lane WS, Charrin S et al. EWI2/PGRL associates with the metastasis suppressor KAI1/CD82 and inhibits the migration of prostate cancer cells. Cancer Res 63 (2003) 2665–2674