3 TEMPLATED FABRICATION OF NANORING ARRAYS
BASED ON LIL

Nanorings, artificial nanoscale clusters, have recently attracted considerable attention both theoretically and experimentally. Lithographically defined arrays of metallic or semiconductor nanorings are particularly interesting for applications due to their unique magnetic, optical or electrical properties.

For example, for the application in data storage devices, magnetic memory devices based on flux-closure magnets were first introduced during the early 1950s. These non-volatile devices used macroscopic ring-shaped ferrite magnets connected in a grid using Ni wires, and bits of information are stored by magnetizing each ring structure clockwise or counterclockwise. The most modern version of magnetic storage is Magnetic random access memory (MRAM). Recently, beyond elongated or bar-shaped elements, high density MRAM devices based on ring-shaped magneto-resistive elements have been proposed. In the last three years, much attention has been drawn towards elliptical magnetic rings with an in-plane magnetic anisotropy. Due to the existence of more than two stable magnetic states in an elliptical magnetic nanoring structure, more than one bit to be stored in each element is allowed, for potential application in novel elliptical-ring-shaped MRAM devices.

Motivated by the application potential, efforts to construct mesoscopic nanorings have led researchers to explore and develop a variety of fabrication methods. Conventional lithography techniques such as optical lithography and EBL are limited in spatial resolution and writing speed, respectively. Alternatively, low-cost template-based synthesis approaches for ring-shaped nanostructures have been developed very recently. Nanosphere lithography and nanoporous templates have been employed for the fabrication of nanoring arrays.

In case of nanosphere lithography for nanoring arrays, usually self-assembled polymeric or silica nanospheres or nanoparticles are positioned on planar substrate. Metallic thin
films are subsequently deposited onto the nanospheres. Metallic nanorings are obtained by perpendicular ion-beam bombardment and chemical removal of the nanospheres. However, the arrangement of the thus obtained nanorings is often random, or ordered only in small areas when self-ordering strategies are applied for the nanosphere assembly.

Membrane structures were also utilized for the fabrication of nanoring arrays such as porous anodic aluminium oxide (AAO) \(^{56-58}\) and nanochannel glass (NCG). \(^{59}\) They are scalable and suitable for the large-area fabrication of arrays of circular-shaped nanorings. However, the template preparation is cost- and time-consuming. Moreover, fabrication of elliptical nanoring arrays is not possible with these templates.

As an alternative approach a templated deposition method of perfectly ordered nanoring arrays based on LIL will be introduced in this chapter. These templates with perfectly ordered hole array structures were fabricated by LIL exposures and structure transfer techniques. Electrochemical deposition and atomic layer deposition (ALD) were employed for the deposition of ring materials. In section 3.1, two novel methods for the electrodeposition of metallic nanoring or nanowire arrays on patterned highly doped silicon templates and sacrificial Cr layer electrode are discussed, respectively. The nanoring arrays generated by ALD and subsequent perpendicular Ar\(^+\) sputtering are introduced in section 3.2.

3.1 Electrochemical Deposition of Nanoring and Nanowire Arrays

3.1.1 Templated Electrochemical Deposition

Electrochemical deposition combined with resist patterning techniques provides a powerful tool for the fabrication of micro- and nanostructures. Although in the IC industry, one tends to avoid wet chemistry, both IC and micromachining needs are forcing reconsideration of electrochemical deposition as a viable solution. Nowadays, the electrochemical deposition based LIGA \(^{60}\) process is a standard technique for the fabrication of micro devices. The principle of templated electrochemical deposition
(ECD) is the selective electrodeposition of metals or semiconductors on a conductive seed layer through openings in an insulating mask. This deposition technique is characterized by a very high fidelity to the mask.

Penner et al. have recently reported a fabrication approach for lateral nanowire arrays, combined templated electrodeposition technique and edge lithography strategy, called electrochemical step edge decoration (ESED). Highly oriented pyrolytic graphite (HOPG) was used as a template substrate for electrochemical deposition of hemicylindrical nanowires on the atomic step edges with diameters ranging from 10 nm to 1 μm. Due to the potential difference on the step edges, the highest deposition rate of metals occurs at the step edges during the electrodeposition process. However, the step edges of HOPG substrate are not perfectly aligned; therefore electrodeposition of perfectly ordered nanowire arrays is not feasible. Furthermore, deposition of nanoparticles occurs frequently on the graphite terraces.

Figure 30: Schematic illustration of electrochemical step edge decoration (ESED).

3.1.2 Patterned Highly Doped Si Template

In this work, a large-area fabrication technique for ideally ordered lateral metallic nanowire or nanoring arrays over wafer-scale areas on highly doped silicon substrate has been developed. This approach is based on the generation of Si₃N₄ nanohole arrays or grating structures on silicon wafers by LIL and the selective electrochemical deposition on the step edges of periodic Si₃N₄ patterns.
Figure 31: Schematic illustration of lithographically guided electrodeposition of ideally ordered metallic nanowire or nanoring arrays on a highly doped silicon substrate. (a) LIL patterning of PR and ARC on the substrate; (b) pattern transfer through the underlined Si$_3$N$_4$ and into the highly doped silicon substrate by RIE with CHF$_3$ gas, removal of the remaining polymer with O$_2$ plasma, and subsequent treatment of the substrate with 5% HF solution; (c) selective electrodeposition of metal along the step edges; (d) nanoring array deposited on the substrate with hole patterns; (e) nanowire array deposited on line patterns.

Figure 31 (a-c) schematically illustrated the fabrication procedure. PR and ARC on highly doped silicon (resistivity ca. 0.01-0.02 Ω·cm) wafer covered with a 35 nm thick Si$_3$N$_4$ layer were first patterned by LIL into periodic lines or holes patterns. The polymer (PR and ARC) structures generated by LIL served as etching masks for an anisotropic RIE through the Si$_3$N$_4$ layer and they were also overetched into the Si substrate. After the pattern transfer process the remaining polymer resists were removed by O$_2$ plasma, which also leads to the formation of silicon oxide in the opened parts. Prior to the electrodeposition process, the sample was treated with 5% HF solution for 90 sec to remove partly the thin oxide layer at the step edges caused by native oxidation or O$_2$ plasma treatment. Subsequently, the silicon substrate with the Si$_3$N$_4$ pattern was utilized as the working cathode for the electrochemical deposition of metals. The insulating layer of Si$_3$N$_4$ on the mesas and the native oxide layer in the valleys ensured
that the electrochemical deposition of metal occurred exclusively on the etched undercuts of the patterns and not everywhere on the top surface of the template. The current density was adjusted according to the area and structure density of the templates. In the present method, on samples with hole (Figure 31d) and line patterns (Figure 31e), arrays of nanorings and nanowires were obtained, respectively.

With this novel approach, the thickness of the nanoring/nanowire in cross-section could be controlled by monitoring the amount of total integrated charges involved in the electrochemical reaction, i.e. the current density and the deposition time. The shape and the arrangement of the nanorings/nanowires could be controlled by the LIL patterning process. Typically, feature sizes ranging from 50 to 300 nm and nanorings with different aspect ratios in shape can be obtained by our approach.

Fabrication of nanowire arrays by using substrates with lines patterns has also been demonstrated (Figure 32). Arrays of ideally ordered metal nanowires on Si substrates of several centimeters were realized in our experiments. In comparison with the ESED method, in our approach the arrangement of the nanowires can be varied over a broad range and the length of the nanowires can be extended over a whole wafer. In addition, it is worth noting that in each groove, two parallel nanowires were deposited on both edges. This enables us to achieve nanowire arrays with half of the periodicity of LIL-defined pattern.

Figure 32: SEM images of Au nanowire array with a wire diameter of 110 nm in (a) top-view and (b) cross-section view.
Figure 33: Representative SEM images of arrays of Au nanorings with different geometries. (a) Circular ring array; (b) hexagonally arranged elliptical ring array in top view and (d) in cross-section view; (c) elliptical ring array.

Figure 33 shows representative SEM images of Au nanoring arrays with different feature sizes and aspect ratios in top- and cross-section views. Figure 33a shows an array of circular-shaped rings, which have a wire thickness of 103 nm, a ring inner diameter of 1070 nm and a 1300 nm periodicity. Figure 33b and d are top- and oblique-views showing a hexagonal array of elliptical rings with a wire diameter of 57 nm, a long-axis diameter of 1250 nm, a short-axis diameter of 680 nm and a center-to-center spacing of 1330 nm. Figure 33c demonstrates elliptical rings with high aspect ratio (11:1 in long-axis:short-axis) and a wire diameter of 189 nm.

In order to investigate the mechanisms of the selective deposition on the undercuts of the structures, TEM specimens of the topographic profile of the sample shown in Figure 33b has been prepared and images have been taken with a Phillips CM 20 STEM. The cross-section of the silicon substrate, the step edges and the gold nanowires can be seen
in Figure 34a. Detailed information and corresponding schematic illustrations are shown in Figure 34b. In the pattern-transfer step, a RIE recipe of CHF$_3$ plasma with 30 sccm, 10 mTorr (1 Torr=133.3 Pa), -320 V) has been performed. As can be seen from the TEM image, it is apparent that the Si$_3$N$_4$ layer was opened and the pattern was successfully transferred into the underlying highly doped silicon substrate by the RIE. An undercut of about 9 nm was formed in the silicon substrate.

Figure 34: (a) TEM image of an Au nanoring on the substrate showed in Figure 33b in cross-section view; (b) magnified-view of (a) and the corresponding schematic illustrations.

As in case of ESED, nucleation of metal occurs preferentially along the step edges at the initial stage of electrodeposition because the electrical field is focused on the edges due to the geometric effect. [68–71] It is believed that the electrical charges were also focused onto the undercuts, reducing metal ions at the step edges in our case (Figure 35).

It is also believed that the inhomogeneity of the thickness of the native oxide layer plays an important role in the selective deposition of metal along the step edges (Figure 36). We assume that the native oxide layer, which can block the electrodeposition, at the shoulder of the step edge is thinner than that on the terrace. In order to get an insight into this phenomenon, systematic experiments were performed by electrodepositing gold on patterned substrates that were etched by using 5% HF solution for different periods of time prior to the deposition (Figure 36). For the substrate etched for 90 sec, the metal deposition occurred only along the step edges and metallic ring structures
were successfully formed. Whereas electrodeposition on the substrate etched for 120 sec results in a high density of metallic dots on the Si valley surfaces.

![Figure 35: Schematic illustration of focusing of the electric field on the overetched undercut due to geometric effect during the electrodeposition.](image)

Figure 35: Schematic illustration of focusing of the electric field on the overetched undercut due to geometric effect during the electrodeposition.

![Figure 36: SEM micrographs and the corresponding schematic illustrations of the effect of HF treatment on the deposition results. (a) Successfully selective metal deposition; (b) granular gold films on the patterned Si substrates. Before electroplating, the samples were treated with 5% HF solution for (a) 90 sec and (b) 120 sec.](image)

Figure 36: SEM micrographs and the corresponding schematic illustrations of the effect of HF treatment on the deposition results. (a) Successfully selective metal deposition; (b) granular gold films on the patterned Si substrates. Before electroplating, the samples were treated with 5% HF solution for (a) 90 sec and (b) 120 sec.

The SiO$_2$ layer along the step edges is preferentially removed by a short HF etching
(<90 sec), whereas the Si valley surfaces were still covered with an oxide layer, i.e., only the step edges were exposed to the electrolyte and the deposition took place there (Figure 36a). After 120 sec HF etching, the oxide layer on the valley surface was also completely removed. As a result, a selective electroplating can not be achieved, and metal deposition could take place on the entire surface uncovered with the Si₃N₄ mask (Figure 36b). As can be seen from the insert of Figure 36b, the density of metal deposition along the step edge is clearly higher than in the Si valley. We can deduce that the topography of the step edges leads to a preferential nucleation during the electrodeposition process, although the oxide layer has been completely removed. The geometric effect produced an energetic disparity for the electrodeposition.

If we summarize the mechanism of the selective electroplating in this work (recall Figure 34b), five major arguments could be considered to positively affect the forming of nanoring and nanowire arrays:

- The resist pattern was transferred into the conductive silicon substrate for 5–10 nm by RIE. The topographic profile induced a preferential nucleation at the step edges;

- During the removal of the polymer by RIE with O₂ plasma, an amorphous passivation layer could be generated in the valleys of the Si substrate, which has the potential to prevent the valley surfaces from direct electrodeposition;

- The inhomogeneity of the oxide layer enables the preferential exposure of the step edges to the electrolyte, which leads to a selective electroplating;

- The strong focusing effect of the electric field at the shoulders of the step edges during the electrodeposition results in selective reduction of metal ions there;

- The electric-field-assisted fast diffusion of metal ions towards the step edges guides strongly the selective deposition.
3.1.3 **Deposition of Nanorings on Metallic Electrodes**

The major difficulty of the method introduced above is that the etching of the native SiO$_2$ layer on a highly doped silicon substrate prior to the electrodeposition is difficult to be precisely controlled. Therefore, a second generation of templates with a metallic electrode contact has been developed. Figure 37 schematically illustrates the process of this method in cross-section view. A Cr layer with a thickness of 20 nm was sputtered on a silicon wafer with a 100 nm oxide layer prior to the resist deposition. Desired periodic holes or grating structures were obtained by LIL exposures and subsequently transferred through the Cr layer by RIE with Cl$_2$ gas. The patterned Cr layer was used as working electrode for the electrodeposition. The Cr layer was recessed in a resist and SiO$_2$ sandwich, which ensures that the metal deposition occurred only along the exposed edges of Cr layer.

![Figure 37: Schematic illustration of electrodeposition of nanoring arrays on sacrificial Cr layer electrode.](image)

(a) LIL patterning of the PR and ARC deposited on the substrate; (b) pattern transfer through the buried Cr layer; (c) electrodeposition of metal along the edges of Cr pattern.
Parallel to our work, Penner and his co-workers published a similar method, called lithographically patterned nanowire electrodeposition (LPNE).[72] Nickel was chosen in that case as sacrificial layer for the preparation of a nanoband electrode and the exposed nickel layer was removed locally electrochemically. In our approach, Cr layer has been employed because it is a lithographically compatible material, such as for RIE process, and it will not affect the measurements of magnetic properties of the as-prepared nanoring structures. In comparison to nickel, Cr is much easier to be oxidized, which could block the electrodeposition. Therefore, a HF etching prior to the electrodeposition was performed to remove the native CrO\textsubscript{2} layer on the exposed working electrode.

Figure 38 shows the SEM image of an as-prepared elliptical Ni nanoring array with magnified view as insert. The elliptical rings are hexagonally arranged and have a diameter in the long-axis of 1230 nm and in the short-axis of 400 nm, which gives an aspect ratio of ca. 3.1 (long-axis: short-axis). The center to center distance is about 740 nm and the diameter of the deposited ring-like metal wires is below 60 nm. It is apparent from the SEM image that this approach provides a homogenous deposition of metals along the step edges of resist structures and therefore allows the generation of complex structures, e.g. nanowire arrays. After the deposition of desired materials along the step edges, the photoresist and the sacrificial Cr layer could be selective etched.
away by RIE and chemically, respectively. Thus freestanding nanoring or nanowire arrays could be obtained on normal silicon substrates, which will not influence the characterization of the properties of the structures, such as magnetic, electric, optic and thermoelectric properties, etc. Room temperature hysteresis loop measurements of the nanoring arrays shown in Figure 38 were obtained using a SQUID (Superconducting Quantum Interference Device)-Magnetometer. Figure 39 shows the hysteresis loops on applying a magnetic field parallel and perpendicular to the long axis of the elliptical rings, respectively. The long-axis was determined by optical microscopy. On applying a magnetic field parallel to the long-axis, the collective magnetization reversal of the array shows an easy-axis behavior, while applying a field perpendicular to the long-axis displays a hard-axis behavior. The results indicate that the elliptical shape anisotropy dominates the magnetization reversal of this array at room temperature.

![Graph](image)

Figure 39: Room temperature hysteresis loop measurements on applying magnetic fields parallel and perpendicular to the long axis of Ni elliptical ring array, respectively.

Ni$_{0.8}$Fe$_{0.2}$ permalloy nanoring array was also prepared with the same template. Room
temperature hysteresis loops on applying a magnetic field parallel and perpendicular to the long axis of the ellipses have also been measured with a SQUID-Magnetometer. Figure 40 shows the results of measurements of magnetic properties. Both loops display that switching in this ring structures is a complex multistep process rather than a two step process shown in the Ni ring array above. The slanted plateau between transitions and the slope of the transitions suggest that the rings exhibit the vortex and onion state.\[46\]

Figure 40: Room temperature hysteresis loop measurements on applying magnetic fields parallel and perpendicular to the long axis of Ni\(_{0.8}\)Fe\(_{0.2}\) permalloy elliptical ring array, respectively.

Adeyeye et al. have reported the spin state evolution and in-plane magnetic anisotropy of elongated Ni\(_{0.8}\)Fe\(_{0.2}\) nanorings in 2005.\[47\] They have fabricated permalloy elongated nanorings by using deep UV lithography on a 4x4 mm\(^2\) area and lift-off processes. The room temperature magnetization curve (Figure 41a) of the rings was measured using vibrating sample magnetometer (VSM) and the hysteresis loop of a single ring was simulated (Figure 41b). Both experimental and theoretical results display a number of
transitions in the magnetization states as the applied field is varied from saturation field H_s in one direction to H_s in the other. Compared to their results, our magnetic hysteresis loops (Figure 40) of permalloy elliptical nanoring arrays show similar complexities and magnetic anisotropy. However, our fabrication method provides a better resolution and flexibility.

Figure 41: Results from the Ref [47]: (a) Magnetic hysteresis loop of arrays of elongated 30-nm-thick Ni$_{0.8}$Fe$_{0.2}$ rings when the applied field is along the major axis; (b) simulated hysteresis loop of a single elongated 30-nm-thick Ni$_{0.8}$Fe$_{0.2}$ ring.
3.2 ATOMIC LAYER DEPOSITION (ALD) OF NANORING ARRAYS

3.2.1 PRINCIPLE OF ALD

Atomic layer deposition (ALD) is a chemical vapour deposition technique for the deposition of materials with extremely precise control over layer thickness down to a fraction of a monolayer. ALD has the capability to coat complex nanostructure surfaces with a conformal material layer of high quality. From a technical point of view, ALD has been defined as a film deposition technique based on the sequential use of self-terminating gas-solid reactions.\(^\text{[73]}\) One ALD reaction cycle is schematically illustrated in Figure 42. A reaction cycle of ALD consists of the following four characteristic steps \(^\text{[73]}\):

- **Step #1**: A self-terminating reaction of the first reactant (A);
- **Step #2**: A purge or evacuation step to remove the unreacted reactants and the gaseous reaction by-products;

![Image of ALD reaction cycle](image-url)
• Step #3: A self-terminating reaction of the second reactant (B) or another treatment to achieve the surface again for the reaction of reactant A;

• Step #4: A purge or evacuation step.

A certain amount of material is deposited on the surface by each reaction cycle. To grow a material layer, reaction cycles are repeated until the desired thickness of material has been deposited. Because of the surface control, extremely conformal and uniform material coatings are obtained. In this work, TiO₂ and Al₂O₃ deposition have been performed for nanoring (this section) and nanochannel (section 5.3) arrays.

3.2.2 ALD OF NANORING ARRAYS

The fabrication method of nanoring arrays by template based ALD deposition and Ar⁺ sputtering is schematically illustrated in Figure 43. The polymer hole array generated by LIL were transferred into the underlying 25 nm thick SiO₂ layer and used as template for the ALD of TiO₂ layer at room temperature (RT). The entire topography of the template was coated with a homogenous TiO₂ layer. Subsequently, a perpendicular Ar⁺ bombardment was performed to remove the top- and bottom-parts of the TiO₂ coating and therefore independent TiO₂ nanoring structures were obtained in the polymer holes. Finally the polymers were removed by RIE with O₂ plasma in order to achieve a free-standing TiO₂ nanoring array.

Figure 44 shows the representative SEM micrographs. A template coated with a uniform TiO₂ layer obtained by ALD at RT is presented in Figure 44a. After a perpendicular Ar⁺ bombardment, a perfectly square-like arranged circular TiO₂ nanoring array has been achieved. The rings have an inner diameter of 119 nm, a wall thickness of the ring of ~34 nm, and a center-to-center spacing of 370 nm.
3. TEMPLATED FABRICATION OF NANORING ARRAYS BASED ON LIL

Figure 43: Schematic illustration of fabrication of nanoring arrays by template based ALD of TiO₂ and Ar sputtering. (a) Template with hole array structures was fabricated by means of LIL, and the structures were transferred into the underlying SiO₂ layer by RIE with CHF₃ gas; (b) ALD of TiO₂ layer on the substrate surface at RT; (c) perpendicular Ar⁺ sputtering to remove the top- and bottom-parts of the TiO₂ layer; (d) release the separated TiO₂ nanoring arrays from the polymer structures by O₂ plasma RIE.

Figure 44: SEM images of (a) cross-section view of a template coated with a uniform TiO₂ layer and (b) top-view of square arranged TiO₂ nanoring array. A magnified view is shown as an insert, the wall thickness of the ring is ~34 nm.

With this method, the diameter, ring-shape and arrangement could be adjusted by the LIL process, which provides a flexible variation of such parameters. The thickness of the wall of the rings could be precisely controlled by varying the number of ALD cycles. However, the Ar⁺ bombardment is not suitable for the removal of a very thick layer (>35 nm), otherwise the homogeneity of the surface could not be guaranteed. For a thick ring wall or a multilayered nanoring array, repeating of the process steps from (a) to (c) in Figure 43 is proposed. Due to the conveniences of ALD, a broad range of
materials can be used easily in this method. Even magnetic materials for magnetic ring arrays, which are interesting for applications, could be deposited directly or obtained by reducing oxides such as NiO or Fe₂O₃ into Ni or Fe₃O₄, respectively, in a hydrogen atmosphere. In addition, ring arrays with extremely small thickness, e.g. even several nanometer are feasible.

3.3 SUMMARY

In this chapter, LIL has been employed for the definition of locations and shapes of nanoring arrays. By double exposures, perfectly ordered circular or elliptical structure arrays have been fabricated in photoresist layers on a desired substrate and used as templates. Large-area ordered metallic nanoring arrays have been obtained by electroplating of metals along the step edges of resist structures on the templates. A second generation of substrate has been developed with metallic electrodes. Uniform metal deposition along the step edges of resist structures and, therefore, homogenous nanoring arrays have been obtained. Combination of room temperature ALD of TiO₂ on the template and subsequent Ar⁺ bombardment provides another novel approach for the parallel synthesis of nanoring arrays of various functional materials.