Crystallization of Inorganic Compounds – Scaling in Seawater Desalination

Eingereicht am Zentrum für Ingenieurwissenschaften
Martin-Luther-Universität Halle-Wittenberg

zur Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.)
genehmigte

Dissertation

von

geboren 6. Mai 1977 in Bagdad, Irak

Gutachter:
1. Prof. Dr.-Ing. habil. J. Ulrich
2. Prof. Dr. Schulte

Halle (Saale), 08. December 2008

urn:nbn:de:gbv:3-000014874
[http://nbn-resolving.de/urn/resolver.pl?urn=nbn%3Ade%3Agbv%3A3-000014874]
Dedication

I dedicate this work to my father, who passed away while I am far away from him busy with this work, may God bless his soul, and to my mother who is proud of me as I am proud of her.

Dad... You are always in my thoughts!
Acknowledgment

I wish to express my deepest gratitude and sincere appreciation to my supervisor Prof. Joachim Ulrich, for his supervision, guidance and helpful suggestion throughout the research work. I would like to acknowledge the financial support by the DAAD for my PhD work in Germany.

Also, special thanks to the staff of department of thermal separation processes who offered great help and cooperation. I would like to thank Dr. Matthew Jones, Helmut Weißbarth, Severine Dette, Kathrin Jäger, Isolde Trümper, Nadine Pachulski and Caner Yürüdü.

Last but not least, I am very grateful to my entire family for their moral support. To each and every one of you - thank you!

Halle (Saale), August 2008
# Table of Content

1 **Introduction** ........................................................................................................... 1

2 **State of the Art** ....................................................................................................... 2

## Effects of Additives on the MSZ Width

2.1 Electrolyte solutions ............................................................................................... 2

2.2 Thermodynamics of ion solvation ......................................................................... 2

2.3 Solubility and nucleation ....................................................................................... 4

2.4 Metastable zone width and influence of the additive ............................................. 8

2.5 Induction time ......................................................................................................... 9

## Scale Reduction in Seawater

2.6 Seawater composition and saturation state .......................................................... 11

2.7 Chemical definition of scales ................................................................................. 13

2.7.1 The alkaline scale ............................................................................................... 13

2.7.2 The non alkaline scale ....................................................................................... 13

2.8 Desalination methods ............................................................................................. 14

2.9 Problems caused by scaling .................................................................................. 15

2.9.1 Thermal technologies ......................................................................................... 15

2.9.2 Membrane technologies .................................................................................... 15

2.10 Methods of scale reduction; disadvantages ......................................................... 15

2.11 Aims of research work .......................................................................................... 16

2.12 Present work methodology ................................................................................... 17

2.12.1 Suggested rule to select the additives .............................................................. 17

2.12.2 Suggested methods to reduce scaling in seawater desalination ......................... 18

3 **Experimental Work** .............................................................................................. 20

3.1 Polythermal and isothermal methods ..................................................................... 20

3.1.1 The effect of inorganic impurities on the width of the metastable zone ............... 20

3.1.2 Induction time of calcium carbonate in artificial seawater .................................. 22

3.2 Fluidized bed crystallizer ......................................................................................... 23

3.2.1 Seeds of natural calcite ....................................................................................... 23

3.2.2 The hot finger technique .................................................................................... 25

3.3 Ultrasonic irradiation .............................................................................................. 26
4 Results

MSZ Width Results

4.1 The effect of selected inorganic additives on the MSZ width of inorganic compounds

4.1.1 The effects of \( \text{Al}_2\text{(SO}_4\text{)}_3 \), \( \text{FeSO}_4 \), \( \text{BaCl}_2 \), \( \text{Li}_2\text{SO}_4 \) and \( \text{K}_2\text{SO}_4 \) on the MSZ width of \( \text{ZnSO}_4 \)

4.1.1.1 The effect of \( \text{Al}_2\text{(SO}_4\text{)}_3 \) on the MSZ width of \( \text{ZnSO}_4 \)

4.1.1.2 The effect of \( \text{FeSO}_4 \) on the MSZ width of \( \text{ZnSO}_4 \)

4.1.1.3 The effect of \( \text{BaCl}_2 \) on the MSZ width of \( \text{ZnSO}_4 \)

4.1.1.4 The effect of \( \text{Li}_2\text{SO}_4 \) on the MSZ width of \( \text{ZnSO}_4 \)

4.1.1.5 The effect of \( \text{K}_2\text{SO}_4 \) on the MSZ width of \( \text{ZnSO}_4 \)

4.1.2 The effects of \( \text{AlCl}_3 \), \( \text{FeCl}_2 \), \( \text{MgCl}_2 \) and \( \text{BaCl}_2 \) on the MSZ width of \( \text{LiCl} \)

4.1.2.1 The effect of \( \text{AlCl}_3 \) on the MSZ width of \( \text{LiCl} \)

4.1.2.2 The effect of \( \text{FeCl}_2 \) on the MSZ width of \( \text{LiCl} \)

4.1.2.3 The effect of \( \text{MgCl}_2 \) on the MSZ width of \( \text{LiCl} \)

4.1.2.4 The effect of \( \text{BaCl}_2 \) on the MSZ width of \( \text{LiCl} \)

4.1.3 The effects of \( \text{CuSO}_4 \), \( \text{BaCl}_2 \) and \( \text{Li}_2\text{SO}_4 \) on the MSZ width of \( \text{K}_2\text{SO}_4 \)

4.1.3.1 The effect of \( \text{CuSO}_4 \) on the MSZ width of \( \text{K}_2\text{SO}_4 \)

4.1.3.2 The effect of \( \text{BaCl}_2 \) on the MSZ width of \( \text{K}_2\text{SO}_4 \)

4.1.3.3 The effect of \( \text{Li}_2\text{SO}_4 \) on the MSZ width of \( \text{K}_2\text{SO}_4 \)

4.2 Determination the induction time of \( \text{CaCO}_3 \) in artificial seawater

4.2.1 Induction time at 35 g/kg salinity

4.2.1.1 Effect of \( \text{NaHCO}_3 \) addition on the induction time of \( \text{CaCO}_3 \)

4.2.1.2 Induction time of \( \text{CaCO}_3 \) as a function of supersaturation and temperatures (30, 40, 50 and 70 °C)

4.2.2 Induction time at 55 g/kg salinity

4.2.2.1 Effect of \( \text{NaHCO}_3 \) addition on the induction time of \( \text{CaCO}_3 \)

4.2.2.2 Induction time of \( \text{CaCO}_3 \) as a function of supersaturation and temperatures (30, 50 and 70 °C)

Scale Reduction Results

4.3 Reduction of \( \text{CaCO}_3 \) by seeding; without chemical addition

4.4 Reduction of \( \text{CaCO}_3 \) by a hot finger; without chemical addition

4.5 Reduction of \( \text{CaCO}_3 \) by precipitation; supersaturation modified by \( \text{NaHCO}_3 \)

4.5.1 Reduction of calcium ion versus \( \text{NaHCO}_3 \) addition