A. Tabellen

Auf den folgenden Seiten findet man eine Zusammenstellung der Parametertabellen, die für das UNIFAC-RFVT-Modell notwendig sind.

Die Tab. A.1 liefert ein Überblick über in die Optimierung einbezogene Gruppen. Dieser Tabelle sind auch die Werte der Volumen- und Oberflächenparameter zu entnehmen.

<table>
<thead>
<tr>
<th>Hauptgruppe</th>
<th>Gruppe</th>
<th>Molmasse</th>
<th>R</th>
<th>Q</th>
<th>Beispiel</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH₄</td>
<td>15.0000</td>
<td>0.9011</td>
<td>0.8480</td>
<td>Butan: 2 CH₃, 2 CH₂</td>
</tr>
<tr>
<td>2</td>
<td>CH₂</td>
<td>14.0000</td>
<td>0.6744</td>
<td>0.5400</td>
<td>Butan: 2 CH₃, 2 CH₂</td>
</tr>
<tr>
<td>3</td>
<td>CH</td>
<td>13.0000</td>
<td>0.4469</td>
<td>0.2280</td>
<td>2-Methylpropan: 3CH₃, 1CH</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>12.0000</td>
<td>0.2195</td>
<td>0.0000</td>
<td>2,2-Dimethylpropan: 4CH₃, 1C</td>
</tr>
<tr>
<td>2</td>
<td>C=CH</td>
<td>26.0000</td>
<td>1.1167</td>
<td>0.8670</td>
<td>2-Hexen: 2CH₃, 2CH₂, 1CH=CH</td>
</tr>
<tr>
<td>3</td>
<td>ACH</td>
<td>13.0000</td>
<td>0.5313</td>
<td>0.4000</td>
<td>Benzol: 6 ACH</td>
</tr>
<tr>
<td>4</td>
<td>ACCH₂</td>
<td>25.0000</td>
<td>0.8121</td>
<td>0.3480</td>
<td>Toluol: 5 ACH, 1 ACCH₂</td>
</tr>
<tr>
<td>5</td>
<td>OH</td>
<td>17.0000</td>
<td>1.0000</td>
<td>1.2000</td>
<td>2-Butanol: 2CH₃, 1CH₂, 1CH, 1OH</td>
</tr>
<tr>
<td>8</td>
<td>H₂O</td>
<td>18.0000</td>
<td>0.9200</td>
<td>1.4000</td>
<td>Wasser: H₂O</td>
</tr>
<tr>
<td>10</td>
<td>CH₂CO</td>
<td>43.0000</td>
<td>1.6724</td>
<td>1.4880</td>
<td>2-Butanon: 1CH₃, 1CH₂, 1CH₃CO</td>
</tr>
<tr>
<td>14</td>
<td>COOC</td>
<td>59.0000</td>
<td>1.9031</td>
<td>1.7280</td>
<td>Butyl-Acetat: 1CH₃, 3CH₂, 1CH₃COO</td>
</tr>
<tr>
<td>15</td>
<td>CH₂O</td>
<td>31.0000</td>
<td>1.1450</td>
<td>1.0880</td>
<td>Dimethylether: 1CH₃, 1CH₃O</td>
</tr>
<tr>
<td>28</td>
<td>CH₂O</td>
<td>30.0000</td>
<td>0.9183</td>
<td>0.7800</td>
<td>Diethylether: 2CH₃, 1CH₂, 1CH₂O</td>
</tr>
</tbody>
</table>

Tab. A.1: Überblick über die hier verwendeten Haupt- und Untergruppen des UNIFAC-Modells sowie über die Volumen- und Oberflächenparameter.
<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Nr.</th>
<th>A^* cm3mol$^{-1}$</th>
<th>B^* cm3mol$^{-1}$K$^{-1}$</th>
<th>C^* cm3mol$^{-1}$K$^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$</td>
<td>1</td>
<td>18.960</td>
<td>45.580</td>
<td>0</td>
</tr>
<tr>
<td>CH$_2$</td>
<td>2</td>
<td>12.520</td>
<td>12.940</td>
<td>0</td>
</tr>
<tr>
<td>CH</td>
<td>3</td>
<td>6.297</td>
<td>-21.920</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>1.296</td>
<td>-59.660</td>
<td>0</td>
</tr>
<tr>
<td>ACH</td>
<td>5</td>
<td>10.090</td>
<td>17.370</td>
<td>0</td>
</tr>
<tr>
<td>ACCH$_3$</td>
<td>6</td>
<td>23.580</td>
<td>24.430</td>
<td>0</td>
</tr>
<tr>
<td>ACCH$_2$</td>
<td>7</td>
<td>18.160</td>
<td>-8.589</td>
<td>0</td>
</tr>
<tr>
<td>ACCH</td>
<td>8</td>
<td>8.925</td>
<td>-31.860</td>
<td>0</td>
</tr>
<tr>
<td>ACC</td>
<td>9</td>
<td>7.369</td>
<td>-83.600</td>
<td>0</td>
</tr>
<tr>
<td>CH$_2$ =</td>
<td>10</td>
<td>20.630</td>
<td>31.43</td>
<td>0</td>
</tr>
<tr>
<td>CH =</td>
<td>11</td>
<td>6.761</td>
<td>23.97</td>
<td>0</td>
</tr>
<tr>
<td>C =</td>
<td>12</td>
<td>-0.397</td>
<td>-14.10</td>
<td>0</td>
</tr>
<tr>
<td>CH$_2$OH</td>
<td>13</td>
<td>39.460</td>
<td>-110.60</td>
<td>23.31</td>
</tr>
<tr>
<td>CHO</td>
<td>14</td>
<td>40.920</td>
<td>-193.20</td>
<td>32.21</td>
</tr>
<tr>
<td>ACOH</td>
<td>15</td>
<td>41.200</td>
<td>-164.20</td>
<td>22.78</td>
</tr>
<tr>
<td>CH$_3$CO</td>
<td>16</td>
<td>42.180</td>
<td>-67.17</td>
<td>22.58</td>
</tr>
<tr>
<td>CH$_2$CO</td>
<td>17</td>
<td>48.560</td>
<td>-170.40</td>
<td>32.15</td>
</tr>
<tr>
<td>CHCO</td>
<td>18</td>
<td>25.170</td>
<td>-185.60</td>
<td>28.59</td>
</tr>
<tr>
<td>CHO</td>
<td>19</td>
<td>12.090</td>
<td>45.25</td>
<td>0</td>
</tr>
<tr>
<td>CH$_3$COO</td>
<td>20</td>
<td>42.820</td>
<td>-20.50</td>
<td>16.42</td>
</tr>
<tr>
<td>CH$_2$COO</td>
<td>21</td>
<td>49.730</td>
<td>-154.10</td>
<td>33.19</td>
</tr>
<tr>
<td>CHCOO</td>
<td>22</td>
<td>43.280</td>
<td>-168.70</td>
<td>33.25</td>
</tr>
<tr>
<td>COO</td>
<td>23</td>
<td>14.230</td>
<td>11.93</td>
<td>0</td>
</tr>
<tr>
<td>ACCOO</td>
<td>24</td>
<td>43.060</td>
<td>-147.20</td>
<td>0</td>
</tr>
<tr>
<td>CH$_3$O</td>
<td>25</td>
<td>16.660</td>
<td>74.31</td>
<td>0</td>
</tr>
<tr>
<td>CH$_2$O</td>
<td>26</td>
<td>14.410</td>
<td>28.54</td>
<td>0</td>
</tr>
<tr>
<td>CHO</td>
<td>27</td>
<td>35.070</td>
<td>-199.70</td>
<td>40.93</td>
</tr>
<tr>
<td>CO</td>
<td>28</td>
<td>30.120</td>
<td>-247.30</td>
<td>40.69</td>
</tr>
<tr>
<td>CH$_2$Cl</td>
<td>29</td>
<td>25.290</td>
<td>49.11</td>
<td>0</td>
</tr>
<tr>
<td>CHCl</td>
<td>30</td>
<td>17.400</td>
<td>27.24</td>
<td>0</td>
</tr>
<tr>
<td>CCl</td>
<td>31</td>
<td>37.620</td>
<td>-179.10</td>
<td>32.47</td>
</tr>
<tr>
<td>CHCl$_2$</td>
<td>32</td>
<td>36.450</td>
<td>54.31</td>
<td>0</td>
</tr>
<tr>
<td>CCl$_3$</td>
<td>33</td>
<td>48.74</td>
<td>65.53</td>
<td>0</td>
</tr>
<tr>
<td>ACCl</td>
<td>34</td>
<td>23.51</td>
<td>9.30</td>
<td>0</td>
</tr>
<tr>
<td>Si</td>
<td>35</td>
<td>86.71</td>
<td>-555.5</td>
<td>97.90</td>
</tr>
<tr>
<td>SiO</td>
<td>36</td>
<td>17.41</td>
<td>-22.18</td>
<td>0</td>
</tr>
<tr>
<td>COH</td>
<td>37</td>
<td>37.870</td>
<td>-287.089</td>
<td>48.97</td>
</tr>
<tr>
<td>C ≡ CH</td>
<td>38</td>
<td>27.833</td>
<td>-28.813</td>
<td>18.49</td>
</tr>
<tr>
<td>COOH</td>
<td>39</td>
<td>40.011</td>
<td>-94.367</td>
<td>18.33</td>
</tr>
<tr>
<td>Korrektur für = C =</td>
<td>40</td>
<td>14.161</td>
<td>-58.082</td>
<td>16.86</td>
</tr>
<tr>
<td>Korrektur für Cyclopentan</td>
<td>41</td>
<td>19.895</td>
<td>-103.645</td>
<td>30.38</td>
</tr>
<tr>
<td>Korrektur für Cyclohexan</td>
<td>42</td>
<td>21.904</td>
<td>-105.403</td>
<td>25.07</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>43</td>
<td>22.842</td>
<td>-36.454</td>
<td>6.87</td>
</tr>
</tbody>
</table>

Quelle: Tsibanogiannis et al. (1994)

Anpassung der experimentellen Daten von Schmidt (1989)

Tab. A.2: Parameter des GCVOL-Modells
<table>
<thead>
<tr>
<th>m</th>
<th>Gruppe</th>
<th>1CH_2</th>
<th>$2 \text{C}=\text{C}$</th>
<th>3ACH</th>
<th>4ACCH_2</th>
<th>5OH</th>
<th>$8 \text{H}_2\text{O}$</th>
<th>$10 \text{CH}_2\text{CO}$</th>
<th>14COOC</th>
<th>$15 \text{CH}_2\text{O}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH_2</td>
<td></td>
<td>2191.76</td>
<td>3028.26</td>
<td>1415.50</td>
<td>1023.30</td>
<td>1317.89</td>
<td>1256.17</td>
<td>601.29</td>
<td>1.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-3191.26</td>
<td>-2197.80</td>
<td>-4197.54</td>
<td>659.31</td>
<td>1892.37</td>
<td>-4640.32</td>
<td>2430.46</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-3627.98</td>
<td>-3639.62</td>
<td>-1471.45</td>
<td>-475.63</td>
<td>-976.93</td>
<td>429.80</td>
<td>-4159.93</td>
<td>1.82</td>
</tr>
<tr>
<td>2</td>
<td>$\text{C}=\text{C}$</td>
<td>971.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2480.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5954.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ACH</td>
<td>306.29</td>
<td>-1313.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-717.75</td>
<td>-2063.10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>8650.38</td>
<td>364.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ACCH_2</td>
<td>2596.18</td>
<td>-1392.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td>3978.74</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-711.44</td>
<td>4654.08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td>-135.97</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2658.36</td>
<td>355.44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td>3910.99</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>OH</td>
<td>7437.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1962.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>906.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>H_2O</td>
<td>694.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-676.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-4502.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2300.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>914.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-3492.92</td>
</tr>
<tr>
<td>10</td>
<td>CH_2CO</td>
<td>3489.32</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3406.96</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2278.35</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>COOC</td>
<td>-1412.51</td>
<td>189.58</td>
<td>-2152.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-2152.48</td>
<td>-824.91</td>
<td>1772.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3132.86</td>
<td>-590.74</td>
<td>15.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>CH_2O</td>
<td>1.41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1654.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-302.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2741.84</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tab. A.3: Neue Parametermatrix für das UNIFAC-RFVT-Modell, jeweils von oben nach unten A/K, $B \times 10^3$, $C \times 10^5 \text{K}$.
<table>
<thead>
<tr>
<th></th>
<th>Gruppe</th>
<th>n 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>8</th>
<th>10</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CH₂</td>
<td>-</td>
<td>1229.95</td>
<td>2362.47</td>
<td>160.25</td>
<td>1218.36</td>
<td>1878.91</td>
<td>-125.36</td>
<td>1313.17</td>
<td>1.78</td>
</tr>
<tr>
<td>2</td>
<td>C=C</td>
<td>1728.11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>ACH</td>
<td>118.18</td>
<td>-</td>
<td>-</td>
<td>-1927.26</td>
<td>-</td>
<td>-</td>
<td>0.00</td>
<td>3563.95</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ACCH₂</td>
<td>2392.09</td>
<td>-</td>
<td>-4.35</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.00</td>
<td>3949.88</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>OH</td>
<td>8025.38</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>H₂O</td>
<td>-645.07</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-1372.81</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>CH₂CO</td>
<td>4511.38</td>
<td>-</td>
<td>0.00</td>
<td>0.00</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>COOC</td>
<td>-2063.28</td>
<td>-</td>
<td>-58.00</td>
<td>-1624.67</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>CH₂O</td>
<td>1.77</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1572.15</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tab. A.4: Neue Parametermatrix für das UNIFAC-RFVT-Modell, a_{mn}/K berechnet bei 298 K.
Tab. A.5: Parametermatrix für die hier behandelten Gruppen nach Magnussen et al. (1981) (angepaßt an das LLE niedermolekularer Systeme)